2023年閩江師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年閩江師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年閩江師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年閩江師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年閩江師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年閩江師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.2.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C3.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.4.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)5.如果拋物線y2=a(x+1)的準(zhǔn)線方程是x=-3,那么這條拋物線的焦點(diǎn)坐標(biāo)是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個(gè)單位長(zhǎng)度得到,因?yàn)閽佄锞€y2=a(x+1)的準(zhǔn)線方程是x=-3,所以拋物線y2=ax的準(zhǔn)線方程是x=-2,且焦點(diǎn)坐標(biāo)為(2,0),那么拋物線y2=a(x+1)的焦點(diǎn)坐標(biāo)為(1,0).故選C.6.若關(guān)于x的方程x2-2ax+2+a=0有兩個(gè)不相等的實(shí)根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。7.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B8.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:1359.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實(shí)數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長(zhǎng)為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+

AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡(jiǎn)-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-2210.某校對(duì)文明班的評(píng)選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評(píng)價(jià)指標(biāo),并通過經(jīng)驗(yàn)公式樣S=ab+cd+1e來計(jì)算各班的綜合得分,S的值越高則評(píng)價(jià)效果越好,若某班在自測(cè)過程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長(zhǎng)越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會(huì)使得S的值增加最多.故選C.11.如圖,已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),∠ACB的平分線分別交AE、AB于點(diǎn)F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3312.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴當(dāng)1≤x≤10時(shí),由4x=60得x=15?[1,10],不滿足題意;當(dāng)10<x≤100時(shí),由2x+10=60得x=25∈(10,100],滿足題意;當(dāng)x>100時(shí),由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.13.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點(diǎn).

(1)若A,B的中點(diǎn)為P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一個(gè)三等分點(diǎn),求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點(diǎn)為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個(gè)三等分點(diǎn),∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).14.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.15.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號(hào)分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號(hào)同學(xué)同意第j號(hào)同學(xué)當(dāng)選.0,第i號(hào)同學(xué)不同意第j號(hào)同學(xué)當(dāng)選.其中i=1,2,…,k,且j=1,2,…,k,則同時(shí)同意第1,2號(hào)同學(xué)當(dāng)選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學(xué)生是否同意第1號(hào)同學(xué)當(dāng)選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號(hào)同學(xué)當(dāng)選依次由a12,a22,…,ak2確定,而是否同時(shí)同意1,2號(hào)同學(xué)當(dāng)選依次由a11a12,a21a22,…,ak1ak2確定,故同時(shí)同意1,2號(hào)同學(xué)當(dāng)選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.16.若不等式logax>sin2x(a>0,a≠1)對(duì)任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時(shí),函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(diǎn)(π4,1)時(shí),a=π4,然后它只能向右旋轉(zhuǎn),此時(shí)a在增大,但是不能大于1故選B.17.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為______.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).18.

008年北京成功舉辦了第29屆奧運(yùn)會(huì),中國(guó)取得了51金、21銀、28銅的驕人成績(jī).下表為北京奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類比賽的門票:

比賽項(xiàng)目

票價(jià)(元/場(chǎng))

籃球

1000

足球

800

乒乓球

500

若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費(fèi)用不超過男籃門票的費(fèi)用,則可以預(yù)訂男籃門票數(shù)為

A.2

B.3

C.4

D.5

答案:D19.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)成比例,0-2=01,所以,這2個(gè)向量是共線向量,故不能作為基底.B、中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)成比例,46=69,所以,這2個(gè)向量是共線向量,故不能作為基底.C中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)不成比例,2-6≠-54,所以,這2個(gè)向量不是共線向量,故可以作為基底.D、中的2個(gè)向量的坐標(biāo)對(duì)應(yīng)成比例,212=-3-34,這2個(gè)向量是共線向量,故不能作為基底.故選C.20.如圖算法輸出的結(jié)果是______.答案:當(dāng)I=1時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當(dāng)I=4時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當(dāng)I=7時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當(dāng)I=10時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當(dāng)I=13時(shí),不滿足循環(huán)的條件,退出循環(huán),輸出S值16故為:1621.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為422.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x23.在120個(gè)零件中,一級(jí)品24個(gè),二級(jí)品36個(gè),三級(jí)品60個(gè).用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個(gè)個(gè)體被抽取到的概率是()

A.

B.

C.

D.答案:D24.若x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.不充分也不必要條件答案:根據(jù)復(fù)數(shù)的分類,x+yi為純虛數(shù)的充要條件是x=0,y≠0.“若x=0則x+yi為純虛數(shù)”是假命題,反之為真.∴x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的必要不充分條件故選B25.如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線PC交AB的延長(zhǎng)線于點(diǎn)P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B26.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.27.若一元二次方程ax2+2x+1=0有一個(gè)正根和一個(gè)負(fù)根,則有

A.a(chǎn)<0

B.a(chǎn)>0

C.a(chǎn)<-1

D.a(chǎn)>1答案:A28.隋機(jī)變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C29.以橢圓上一點(diǎn)和橢圓兩焦點(diǎn)為頂點(diǎn)的三角形的面積最大值為1時(shí),橢圓長(zhǎng)軸的最小值為()

A.

B.

C.2

D.2

答案:D30.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長(zhǎng)為8,高為4的等腰三角形,左視圖是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復(fù)原是一個(gè)底面邊長(zhǎng)為8,6的距離,高為4,且頂點(diǎn)在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.31.P為橢圓x225+y216=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),則△PF1F2周長(zhǎng)為______.答案:由題意知△PF1F2周長(zhǎng)=2a+2c=10+6=16.32.柱坐標(biāo)(2,,5)對(duì)應(yīng)的點(diǎn)的直角坐標(biāo)是

。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對(duì)應(yīng)直角坐標(biāo)是()33.設(shè)α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根,當(dāng)m為何值時(shí),α2+β2有最小值?并求出這個(gè)最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當(dāng)m=-1時(shí),α2+β2有最小值,最小值是12.34.設(shè)過點(diǎn)A(p,0)(p>0)的直線l交拋物線y2=2px(p>0)于B、C兩點(diǎn),

(1)設(shè)直線l的傾斜角為α,寫出直線l的參數(shù)方程;

(2)設(shè)P是BC的中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并化為普通方程.答案:(1)l的參數(shù)方程為x=p+tcosαy=tsinα(t為參數(shù))其中α≠0(2)將直線的參數(shù)方程代入拋物線方程中有:t2sin2α-2ptcosα-2p2=0設(shè)B、C兩點(diǎn)對(duì)應(yīng)的參數(shù)為t1,t2,其中點(diǎn)P的坐標(biāo)為(x,y),則點(diǎn)P所對(duì)應(yīng)的參數(shù)為t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,當(dāng)α≠90°時(shí),應(yīng)有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α為參數(shù))消去參數(shù)得:y2=px-p2當(dāng)α=90°時(shí),P與A重合,這時(shí)P點(diǎn)的坐標(biāo)為(p,0),也是方程的解綜上,P點(diǎn)的軌跡方程為y2=px-p235.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心故選A.36.用反證法證明命題:“三角形的內(nèi)角至多有一個(gè)鈍角”,正確的假設(shè)是()

A.三角形的內(nèi)角至少有一個(gè)鈍角

B.三角形的內(nèi)角至少有兩個(gè)鈍角

C.三角形的內(nèi)角沒有一個(gè)鈍角

D.三角形的內(nèi)角沒有一個(gè)鈍角或至少有兩個(gè)鈍角答案:B37.已知A(0,1),B(3,7),C(x,15)三點(diǎn)共線,則x的值是()

A.5

B.6

C.7

D.8答案:C38.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.39.直線(t為參數(shù))被圓x2+y2=9截得的弦長(zhǎng)為()

A.

B.

C.

D.答案:B40.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.41.經(jīng)過兩點(diǎn)A(-3,5),B(1,1

)的直線傾斜角為______.答案:因?yàn)閮牲c(diǎn)A(-3,5),B(1,1

)的直線的斜率為k=1-51-(-3)=-1所以直線的傾斜角為:135°.故為:135°.42.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()

A.(2,0)

B.

C.(2,π)

D.答案:D43.已知圓C:x2+y2-4x-6y+12=0的圓心在點(diǎn)C,點(diǎn)A(3,5),求:

(1)過點(diǎn)A的圓的切線方程;

(2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當(dāng)切線的斜率不存在時(shí),對(duì)直線x=3,C(2,3)到直線的距離為1,滿足條件;當(dāng)k存在時(shí),設(shè)直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.44.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.45.給定兩個(gè)長(zhǎng)度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].46.若曲線C的極坐標(biāo)方程為

ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y47.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B48.已知圓C:x2+y2-4x-5=0.

(1)過點(diǎn)(5,1)作圓C的切線,求切線的方程;

(2)若圓C的弦AB的中點(diǎn)P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點(diǎn),其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因?yàn)閳AC的弦AB的中點(diǎn)P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直線方程為

x+y-4=0-----------------(14分)49.已知下列命題(其中a,b為直線,α為平面):

①若一條直線垂直于一個(gè)平面內(nèi)無數(shù)條直線,則這條直線與這個(gè)平面垂直;

②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;

③若a∥α,b⊥α,則a⊥b;

④若a⊥b,則過b有且只有一個(gè)平面與a垂直.

上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個(gè)平面與a垂直,顯然正確.故選D.50.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價(jià)于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.第2卷一.綜合題(共50題)1.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求

(1)a?(b+c);

(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a?(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).2.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.3.要從已編號(hào)(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來進(jìn)行發(fā)射試驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號(hào)可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B4.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)5.下列命題:

①用相關(guān)系數(shù)r來刻畫回歸的效果時(shí),r的值越大,說明模型擬合的效果越好;

②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來說,K2越小,“X與Y有關(guān)系”可信程度越大;

③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;

其中正確命題的序號(hào)是

______.(寫出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③6.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標(biāo)原點(diǎn)O,分別以射線OB,OC,AA1的指向?yàn)閤軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系.試寫出正方體八個(gè)頂點(diǎn)的坐標(biāo).答案:解設(shè)i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標(biāo)向量.因?yàn)榈酌嬲叫蔚闹行臑镺,邊長(zhǎng)為2,所以O(shè)B=2.由于點(diǎn)B在x軸的正半軸上,所以O(shè)B=2i,即點(diǎn)B的坐標(biāo)為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以O(shè)B1=(2,0,2).即點(diǎn)B1的坐標(biāo)為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).7.已知點(diǎn)G是△ABC的重心,點(diǎn)P是△GBC內(nèi)一點(diǎn),若,則λ+μ的取值范圍是()

A.

B.

C.

D.(1,2)答案:B8.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C9.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C10.一直線傾斜角的正切值為34,且過點(diǎn)P(1,2),則直線方程為______.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.11.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是

______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).12.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機(jī)抽樣

D.系統(tǒng)抽樣答案:D13.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C14.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____15.選修4-1:幾何證明選講

如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.

(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;

(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.

答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點(diǎn)共圓.(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.∵C,B,D,E四點(diǎn)共圓,∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為5216.若直線過點(diǎn)(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C17.欲對(duì)某商場(chǎng)作一簡(jiǎn)要審計(jì),通過檢查發(fā)票及銷售記錄的2%來快速估計(jì)每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.這種抽取樣本的方法是()A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個(gè)體比較多,抽樣時(shí)某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),這是系統(tǒng)抽樣中的分組,然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.故選B.18.已知一次函數(shù)f(x)=4x+3,且f(ax+b)=8x+7,則a-b=______.答案:∵f(x)=4x+3,f(ax+b)=4(ax+b)+3=4ax+4b+3=8x+7,∴4a=84b+3=7,解得a=2,b=1,∴a-b=1.故為:1.19.對(duì)于空間四點(diǎn)A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點(diǎn)共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點(diǎn)共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點(diǎn)共面,可得A、B、C、D四點(diǎn)有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.20.若點(diǎn)M到定點(diǎn)F和到定直線l的距離相等,則下列說法正確的是______.

①點(diǎn)M的軌跡是拋物線;

②點(diǎn)M的軌跡是一條與x軸垂直的直線;

③點(diǎn)M的軌跡是拋物線或一條直線.答案:當(dāng)點(diǎn)F不在直線l上時(shí),點(diǎn)M的軌跡是以F為焦點(diǎn)、l為準(zhǔn)線的拋物線;而當(dāng)點(diǎn)F在直線l上時(shí),點(diǎn)M的軌跡是一條過點(diǎn)F,且與l垂直的直線.故為:③21.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn),過F2作橢圓的弦AB,若△AF1B的周長(zhǎng)為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長(zhǎng)為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=122.△ABC內(nèi)接于以O(shè)為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O(shè)為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.23.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C24.給出下列四個(gè)命題,其中正確的一個(gè)是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對(duì)解釋變量的貢獻(xiàn)率是80%

B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對(duì)角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差

D.隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0答案:D25.設(shè)a,b∈R,ab≠0,則直線ax-y+b=0和曲線bx2+ay2=ab的大致圖形是()

A.

B.

C.

D.

答案:B26.某次考試,滿分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫出當(dāng)輸入一個(gè)同學(xué)的成績(jī)x時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個(gè)成績(jī)X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束27.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()

A.a(chǎn)<b<c

B.a(chǎn)<c<B

C.c<b<a

D.b<c<a

答案:C28.已知點(diǎn)A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點(diǎn)B的坐標(biāo)為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點(diǎn)A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)29.語(yǔ)句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B30.曲線2y2+3x+3=0與曲線x2+y2-4x-5=0的公共點(diǎn)的個(gè)數(shù)是()

A.4

B.3

C.2

D.1答案:D31.某房間有四個(gè)門,甲要各進(jìn)、出這個(gè)房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C32.經(jīng)過點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C33.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計(jì)算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.34.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:435.設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則“a1<0且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A36.把的圖象按向量平移得到的圖象,則可以是(

)A.B.C.D.答案:D解析:∵,∴要得到的圖象,需將的圖象向右平移個(gè)單位長(zhǎng)度,故選D。37.如圖,圓心角∠AOB=120°,P是AB上任一點(diǎn)(不與A,B重合),點(diǎn)C在AP的延長(zhǎng)線上,則∠BPC等于______.

答案:解:設(shè)點(diǎn)E是優(yōu)弧AB(不與A、B重合)上的一點(diǎn),∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.38.下列圖象中不能作為函數(shù)圖象的是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的概念:如果在一個(gè)變化過程中,有兩個(gè)變量x、y,對(duì)于x的每一個(gè)值,y都有唯一確定的值與之對(duì)應(yīng),這時(shí)稱y是x的函數(shù).結(jié)合選項(xiàng)可知,只有選項(xiàng)B中是一個(gè)x對(duì)應(yīng)1或2個(gè)y故選B.39.給出下列結(jié)論:

(1)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;

(2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;

(3)在回歸分析中,可用相關(guān)系數(shù)r的值判斷模型的擬合效果,r越大,模型的擬合效果越好;

(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.

以上結(jié)論中,正確的有()個(gè).

A.1

B.2

C.3

D.4答案:B40.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C41.3科老師都布置了作業(yè),在同一時(shí)刻4名學(xué)生都做作業(yè)的可能情況有()

A.43種

B.4×3×2種

C.34種

D.1×2×3種答案:C42.已知向量p=a|a|+2b|b|,其中a、b均為非零向量,則|p|的取值范圍是

______.答案:∵|a|a||=1,|2b|b||=2

∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],開方可得

|p|的取值范圍[1,3],故為[1,3].43.不等式的解集是

.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號(hào)是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價(jià)于解得0≤x≤2.44.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D45.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()

A.0.59

B.0.54

C.0.8

D.0.15答案:A46.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個(gè)數(shù)的大小關(guān)系是:______(用符號(hào)“>”連接這三個(gè)字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.47.設(shè)a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.48.設(shè)a=log32,b=log23,c=,則()

A.c<b<a

B.a(chǎn)<c<b

C.c<a<b

D.b<c<a答案:C49.已知200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時(shí)速在[60,70]的汽車大約有200×0.4=80故選B.50.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C第3卷一.綜合題(共50題)1.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B2.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A3.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D4.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()

A.

B.

C.

D.答案:A5.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點(diǎn)共線的充要條件是______.答案:由于AB,AC有公共點(diǎn)A,∴若A、B、C三點(diǎn)共線則AB與AC共線即存在一個(gè)實(shí)數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當(dāng)λμ=1時(shí)AB=1μa+b此時(shí)存在實(shí)數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點(diǎn)A,∴A、B、C三點(diǎn)共線故A、B、C三點(diǎn)共線的充要條件是λμ=16.已知圓C:x2+y2-4y-6y+12=0,求:

(1)過點(diǎn)A(3,5)的圓的切線方程;

(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點(diǎn)A(3,5)的直線?的方程為y-5=k(x-3).因?yàn)橹本€?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點(diǎn)A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因?yàn)樵c(diǎn)在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.7.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點(diǎn)到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點(diǎn)到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.8.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.9.設(shè)集合A={1,2},={2,3},C={2,3,4},則(A∩B)∪C=______.答案:由題得:A∩B={2},又因?yàn)镃={2,3,4},(故A∩B)∪C={2,3,4}.故為

{2,3,4}.10.用隨機(jī)數(shù)表法進(jìn)行抽樣有以下幾個(gè)步驟:①將總體中的個(gè)體編號(hào);②獲取樣本號(hào)碼;③選定開始的數(shù)字,這些步驟的先后順序應(yīng)為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機(jī)數(shù)表法進(jìn)行抽樣,包含這樣的步驟,①將總體中的個(gè)體編號(hào);②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號(hào)碼,∴把題目條件中所給的三項(xiàng)排序?yàn)椋孩佗邰?,故選C.11.已知斜二測(cè)畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測(cè)法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長(zhǎng)度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.12.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.13.把的圖象按向量平移得到的圖象,則可以是(

)A.B.C.D.答案:D解析:∵,∴要得到的圖象,需將的圖象向右平移個(gè)單位長(zhǎng)度,故選D。14.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D15.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機(jī)變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個(gè)數(shù)可能為4,3,2,1個(gè),黑球相應(yīng)個(gè)數(shù)為0,1,2,3個(gè).其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.16.設(shè)△ABC是邊長(zhǎng)為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長(zhǎng)為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:317.①附中高一年級(jí)聰明的學(xué)生;

②直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn);

③不小于3的正整數(shù);

④3的近似值;

考察以上能組成一個(gè)集合的是______.答案:因?yàn)橹苯亲鴺?biāo)系中橫、縱坐標(biāo)相等的點(diǎn)是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級(jí)聰明的學(xué)生,不是確定的,原因是沒法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒說明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.18.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個(gè)動(dòng)點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u(píng)=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.19.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C20.不等式ax2+bx+2>0的解集是(-,),則a+b的值是()

A.10

B.-10

C.14

D.-14答案:D21.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.22.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點(diǎn)M到點(diǎn)C的距離為

______.答案:M為AB的中點(diǎn)設(shè)為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.23.過點(diǎn)P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點(diǎn)斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.24.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會(huì)志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時(shí),表示沒有選到女生;當(dāng)ξ=1時(shí),表示選到一個(gè)女生;當(dāng)ξ=2時(shí),表示選到2個(gè)女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:4725.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()

A.2

B.

C.3

D.

答案:B26.點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是______.答案:設(shè)圓上任意一點(diǎn)為A(x1,y1),AP中點(diǎn)為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡(jiǎn)得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=127.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()

A.若K2的觀測(cè)值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤

D.以上三種說法都不正確答案:C28.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°29.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長(zhǎng)交于,則,,延長(zhǎng)交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.30.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個(gè)頂點(diǎn)分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B31.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn).用AB、AD、AA1表示向量MN,則MN=______.答案:∵M(jìn)N=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.32.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.33.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i34.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線35.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C36.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個(gè)梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:537.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對(duì)該批電子手表進(jìn)行測(cè)試,設(shè)第X次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論