版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知a=(+1)2,估計a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間2.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.3.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.4.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.5.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤6.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.107.下列運算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a28.不等式的解集在數(shù)軸上表示正確的是()A. B. C. D.9.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限10.下列分式是最簡分式的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.關(guān)于的方程有增根,則______.12.若關(guān)于x的分式方程有增根,則m的值為_____.13.在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發(fā),沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒個單位長度,設(shè)第n秒運動到點K,為自然數(shù),則的坐標是____,的坐標是____14.矩形紙片ABCD中,AB=3cm,BC=4cm,現(xiàn)將紙片折疊壓平,使A與C重合,設(shè)折痕為EF,則重疊部分△AEF的面積等于_____.15.如圖,已知長方體的三條棱AB、BC、BD分別為4,5,2,螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是_____.16.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.18.(8分)如圖,已知BD是△ABC的角平分線,點E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.19.(8分)為了提高學(xué)生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)椋ǚ郑?,且,將其按分?shù)段分為五組,繪制出以下不完整表格:組別
成績(分)
頻數(shù)(人數(shù))
頻率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
請根據(jù)表格提供的信息,解答以下問題:(1)本次決賽共有名學(xué)生參加;(2)直接寫出表中a=,b=;(3)請補全下面相應(yīng)的頻數(shù)分布直方圖;(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.20.(8分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.21.(8分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關(guān)系?請說明理由;設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.22.(10分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.23.(12分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:本次調(diào)查的學(xué)生有多少人?補全上面的條形統(tǒng)計圖;扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是;若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?24.計算:sin30°?tan60°+..
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
首先計算平方,然后再確定的范圍,進而可得4+的范圍.【詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【點睛】此題主要考查了估算無理數(shù)的大小,用有理數(shù)逼近無理數(shù),求無理數(shù)的近似值.2、C【解析】
連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,
∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C=(180°-50°)=65°,
故選:C.【點睛】本題考查了圓周角定理、等腰三角形的判定和性質(zhì)、線段的垂直平分線的性質(zhì)定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題.3、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.4、D【解析】
根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.5、C【解析】
根據(jù)二次函數(shù)的性質(zhì)逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關(guān)系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結(jié)論的序號是①②③⑤.故選C6、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.7、B【解析】
直接利用同底數(shù)冪的乘除運算法則以及冪的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A、2a+3a=5a,故此選項錯誤;B、(a3)3=a9,故此選項正確;C、a2?a4=a6,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤.故選:B.【點睛】此題主要考查了同底數(shù)冪的乘除運算以及合并同類項和冪的乘方運算,正確掌握運算法則是解題關(guān)鍵.8、B【解析】
根據(jù)不等式的性質(zhì):先移項,再合并即可解得不等式的解集,最后將解集表示在數(shù)軸上即可.【詳解】解:解:移項得,
x≤3-2,
合并得,
x≤1;
在數(shù)軸上表示應(yīng)包括1和它左邊的部分,如下:;
故選:B.【點睛】本題考查了一元一次不等式的解集的求法及在數(shù)軸上表示不等式的解集,注意數(shù)軸上包括的端點實心點表示.9、D【解析】
根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負,從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.10、C【解析】解:A.,故本選項錯誤;B.,故本選項錯誤;C.,不能約分,故本選項正確;D.,故本選項錯誤.故選C.點睛:本題主要考查對分式的基本性質(zhì),約分,最簡分式等知識點的理解和掌握,能根據(jù)分式的基本性質(zhì)正確進行約分是解答此題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解析】根據(jù)分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點睛:此題主要考查了分式方程的增根問題,解題關(guān)鍵是明確增根出現(xiàn)的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數(shù).12、±【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.有增根,最簡公分母x-3=0,所以增根是x=3,把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘x-3,得x-2(x-3)=m2,∵原方程增根為x=3,∴把x=3代入整式方程,得m=±.【點睛】解決增根問題的步驟:①確定增根的值;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.13、【解析】
設(shè)第n秒運動到Kn(n為自然數(shù))點,根據(jù)點K的運動規(guī)律找出部分Kn點的坐標,根據(jù)坐標的變化找出變化規(guī)律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此規(guī)律即可得出結(jié)論.【詳解】設(shè)第n秒運動到Kn(n為自然數(shù))點,觀察,發(fā)現(xiàn)規(guī)律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018為(1009,0).故答案為:(),(1009,0).【點睛】本題考查了規(guī)律型中的點的坐標,解題的關(guān)鍵是找出變化規(guī)律,本題屬于中檔題,解決該題型題目時,根據(jù)運動的規(guī)律找出點的坐標,根據(jù)坐標的變化找出坐標變化的規(guī)律是關(guān)鍵.14、7516【解析】試題分析:要求重疊部分△AEF的面積,選擇AF作為底,高就等于AB的長;而由折疊可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代換后,可知AE=AF,問題轉(zhuǎn)化為在Rt△ABE中求AE.因此設(shè)AE=x,由折疊可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考點:翻折變換(折疊問題)15、61【解析】分析:要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答,注意此題展開圖后螞蟻的爬行路線有兩種,分別求出,選取最短的路程.詳解:如圖①:AM2=AB2+BM2=16+(5+2)2=65;如圖②:AM2=AC2+CM2=92+4=85;如圖:AM2=52+(4+2)2=61.∴螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是:61.故答案為:61.點睛:此題主要考查了平面展開圖,求最短路徑,解決此類題目的關(guān)鍵是把長方體的側(cè)面展開“化立體為平面”,用勾股定理解決.16、【解析】
根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、(1);(2)點P的坐標為;(3).【解析】
(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關(guān)系求AO?OB構(gòu)造方程求n;(2)求出B、C坐標,設(shè)出點Q坐標,利用平行四邊形對角線互相平分性質(zhì),分類討論點P坐標,分別代入拋物線解析式,求出Q點坐標;(3)設(shè)出點D坐標(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點B坐標,進而找到b與a關(guān)系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當y=0時,0=x2-x-n由一元二次方程根與系數(shù)關(guān)系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設(shè)點Q坐標為(,b)由平行四邊形性質(zhì)可知當BQ、CP為平行四邊形對角線時,點P坐標為(,b+2)代入y=x2-x-2解得b=,則P點坐標為(,)當CQ、PB為為平行四邊形對角線時,點P坐標為(-,b-2)代入y=x2-x-2解得b=,則P坐標為(-,)綜上點P坐標為(,),(-,);(3)設(shè)點D坐標為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關(guān)系得,∴b=a2將點A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運用數(shù)形結(jié)合分類討論思想.18、證明見解析.【解析】試題分析:先利用平行四邊形性質(zhì)證明DE=CF,再證明EB=ED,即可解決問題.試題解析:∵ED∥BC,EF∥AC,∴四邊形EFCD是平行四邊形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考點:平行四邊形的判定與性質(zhì).19、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據(jù)第一組別的人數(shù)和百分比得出樣本容量;(2)根據(jù)樣本容量以及頻數(shù)、頻率之間的關(guān)系得出a和b的值,(3)根據(jù)a的值將圖形補全;(4)根據(jù)圖示可得:優(yōu)秀的人為第四和第五組的人,將兩組的頻數(shù)相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數(shù)分布直方圖20、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙希ㄟ^證明四邊形是平行四邊形達到上述目的.21、(1)=;(2)結(jié)論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國文化旅游行業(yè)現(xiàn)狀調(diào)研及發(fā)展前景分析報告目錄
- 2024-2030年中國軟件開發(fā)行業(yè)市場調(diào)查研究及投資潛力預(yù)測報告
- 帶鋸條磨齒機行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年嬰兒背袋成品項目可行性研究報告
- 2025標志設(shè)計委托的合同書
- 紡織加工廠項目可行性研究報告
- 2025年牛皮瓦楞紙項目可行性研究報告
- 水性涂料生產(chǎn)線建設(shè)項目可行性研究報告申請立項備案
- 2025年中國精神興奮類藥物行業(yè)全景評估及投資規(guī)劃建議報告
- 2025年亮化工程市場分析報告
- 護理人才梯隊建設(shè)規(guī)劃方案
- 睡眠區(qū)布局設(shè)計打造舒適宜人的睡眠環(huán)境
- 建筑設(shè)計行業(yè)項目商業(yè)計劃書
- 慢性病防治健康教育知識講座
- 骶尾部藏毛疾病診治中國專家共識(2023版)
- 【高新技術(shù)企業(yè)所得稅稅務(wù)籌劃探析案例:以科大訊飛為例13000字(論文)】
- 幽門螺旋桿菌
- 智慧農(nóng)業(yè)利用技術(shù)提高農(nóng)業(yè)可持續(xù)發(fā)展的方案
- 制冷壓縮機安全操作規(guī)程范文
- 初中歷史考試試題答題卡模版
- 《草圖大師建?!肥谡n計劃+教案
評論
0/150
提交評論