![2023屆內蒙古巴彥淖爾市高三最后一模數學試題含解析_第1頁](http://file4.renrendoc.com/view/ce69f9fffbaf9803b360860be16881b7/ce69f9fffbaf9803b360860be16881b71.gif)
![2023屆內蒙古巴彥淖爾市高三最后一模數學試題含解析_第2頁](http://file4.renrendoc.com/view/ce69f9fffbaf9803b360860be16881b7/ce69f9fffbaf9803b360860be16881b72.gif)
![2023屆內蒙古巴彥淖爾市高三最后一模數學試題含解析_第3頁](http://file4.renrendoc.com/view/ce69f9fffbaf9803b360860be16881b7/ce69f9fffbaf9803b360860be16881b73.gif)
![2023屆內蒙古巴彥淖爾市高三最后一模數學試題含解析_第4頁](http://file4.renrendoc.com/view/ce69f9fffbaf9803b360860be16881b7/ce69f9fffbaf9803b360860be16881b74.gif)
![2023屆內蒙古巴彥淖爾市高三最后一模數學試題含解析_第5頁](http://file4.renrendoc.com/view/ce69f9fffbaf9803b360860be16881b7/ce69f9fffbaf9803b360860be16881b75.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若不等式在區(qū)間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.2.已知函數,,若存在實數,使成立,則正數的取值范圍為()A. B. C. D.3.在中,內角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.4.已知集合,則=A. B. C. D.5.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i6.函數在的圖象大致為()A. B.C. D.7.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.8.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直9.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或910.已知函數,且),則“在上是單調函數”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件11.兩圓和相外切,且,則的最大值為()A. B.9 C. D.112.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經過,則點到拋物線頂點的距離的最小值是__________.14.已知變量(m>0),且,若恒成立,則m的最大值________.15.若,則______.16.甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)對于給定的正整數k,若各項均不為0的數列滿足:對任意正整數總成立,則稱數列是“數列”.(1)證明:等比數列是“數列”;(2)若數列既是“數列”又是“數列”,證明:數列是等比數列.18.(12分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.19.(12分)已知函數,.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數的取值范圍.20.(12分)已知函數.(1)解不等式;(2)若,,,求證:.21.(12分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結.(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)語音交互是人工智能的方向之一,現在市場上流行多種可實現語音交互的智能音箱.主要代表有小米公司的“小愛同學”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經銷商為了了解不同智能音箱與其購買者性別之間的關聯程度,從某地區(qū)隨機抽取了100名購買“小愛同學”和100名購買“天貓精靈”的人,具體數據如下:“小愛同學”智能音箱“天貓精靈”智能音箱合計男4560105女554095合計100100200(1)若該地區(qū)共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,試估計該地區(qū)購買“小愛同學”的女性比購買“天貓精靈”的女性多多少人?(2)根據列聯表,能否有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區(qū)間內的解集中有且僅有三個整數,轉化為在區(qū)間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.2、A【解析】
根據實數滿足的等量關系,代入后將方程變形,構造函數,并由導函數求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數的取值范圍.【詳解】函數,,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數在求函數最值中的應用,由基本不等式求函數的最值,存在性成立問題的解法,屬于中檔題.3、A【解析】
根據正弦定理可得,求出,根據平方關系求出.由兩端平方,求的最大值,根據三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數量積運算,屬于中檔題.4、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養(yǎng).采取數軸法,利用數形結合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.5、B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.6、C【解析】
先根據函數奇偶性排除B,再根據函數極值排除A;結合特殊值即可排除D,即可得解.【詳解】函數,則,所以為奇函數,排除B選項;當時,,所以排除A選項;當時,,排除D選項;綜上可知,C為正確選項,故選:C.【點睛】本題考查根據函數解析式判斷函數圖像,注意奇偶性、單調性、極值與特殊值的使用,屬于基礎題.7、C【解析】
需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質,三角函數的性質,數形結合思想,轉化與化歸思想,屬于中檔題8、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系9、C【解析】
由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.10、C【解析】
先求出復合函數在上是單調函數的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數,其充要條件為即.故選:C.【點睛】本題考查了復合函數的單調性的判斷問題,充要條件的判斷,屬于基礎題.11、A【解析】
由兩圓相外切,得出,結合二次函數的性質,即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數,屬于中檔題.12、D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據拋物線,不妨設,取,通過求導得,,再根據以線段為直徑的圓恰好經過,則,得到,兩式聯立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2【點睛】本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.14、【解析】
在不等式兩邊同時取對數,然后構造函數f(x)=,求函數的導數,研究函數的單調性即可得到結論.【詳解】不等式兩邊同時取對數得,即x2lnx1<x1lnx2,又即成立,設f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數f(x)在(0,m)上為增函數,函數的導數,由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數單調性與導數之間的應用,根據條件利用取對數得到不等式,從而可構造新函數,是解決本題的關鍵15、【解析】
直接利用關系式求出函數的被積函數的原函數,進一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點睛】本題考查的知識要點:定積分的應用,被積函數的原函數的求法,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題.16、【解析】
求出所有可能,找出符合可能的情況,代入概率計算公式.【詳解】解:甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,共有種,甲乙在同一個公司有兩種可能,故概率為,故答案為.【點睛】本題考查古典概型及其概率計算公式,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)證明見詳解【解析】
(1)由是等比數列,由等比數列的性質可得:即可證明.(2)既是“數列”又是“數列”,可得,,則對于任意都成立,則成等比數列,設公比為,驗證得答案.【詳解】(1)證明:由是等比數列,由等比數列的性質可得:等比數列是“數列”.(2)證明:既是“數列”又是“數列”,可得,()(),()可得:對于任意都成立,即成等比數列,即成等比數列,成等比數列,成等比數列,設,()數列是“數列”時,由()可得:時,由()可得:,可得,同理可證成等比數列,數列是等比數列【點睛】本題是一道數列的新定義題目,考查了等比數列的性質、通項公式等基本知識,考查代數推理、轉化與化歸以及綜合運用數學知識探究與解決問題的能力,屬于難題.18、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調遞減,又因為,故時,總有,所以在上單調遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數.因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導數求函數的最值、研究函數的極值等知識,考查分類討論思想、轉化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.19、(1)(2)【解析】
(1)當時,,當或時,,所以可轉化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當時,因為,所以,不符合題意.當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數的取值范圍為.20、(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即可,由此證明出所證不等式成立.【詳解】(1).當時,由,解得,此時;當時,不成立;當時,由,解得,此時.綜上所述,不等式的解集為;(2)要證,即證,因為,,所以,,,.所以,.故所證不等式成立.【點睛】本題考查絕對值不等式的求解,同時也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 5 We're family (說課稿)-2024-2025學年外研版(三起)(2024)英語三年級上冊
- 1《學習伴我成長》(說課稿)-部編版道德與法治三年級上冊
- Unit 2 Different families Part B Let's talk(說課稿)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 2《用水計量時間》說課稿-2024-2025學年科學五年級上冊教科版
- 2025產品購銷合同樣書
- 2023九年級數學下冊 第25章 投影與視圖25.1 投影第2課時 正投影說課稿 (新版)滬科版001
- 2025城市民用戶燃氣工程實施合同書范本范文
- 2025婦女發(fā)展監(jiān)測評估項目工程合同管理
- 2025合同模板合伙人利潤分配協議范本
- 2024-2025學年高中政治 第3單元 第6課 第1框 源遠流長的中華文化說課稿 新人教版必修3001
- 質量問題分析及措施報告
- 汽修廠安全風險分級管控清單
- 現代通信原理與技術(第五版)PPT全套完整教學課件
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統直流電弧保護技術要求
- DB31T 685-2019 養(yǎng)老機構設施與服務要求
- 燕子山風電場項目安全預評價報告
- 高一英語課本必修1各單元重點短語
- 完整版金屬學與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 心腦血管病的危害教學課件
評論
0/150
提交評論