版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,2.若復數滿足(是虛數單位),則的虛部為()A. B. C. D.3.設復數滿足,則在復平面內的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}5.函數f(x)=2x-3A.[32C.[326.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.7.對于函數,定義滿足的實數為的不動點,設,其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.8.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-39.已知復數滿足,(為虛數單位),則()A. B. C. D.310.函數的值域為()A. B. C. D.11.已知與函數和都相切,則不等式組所確定的平面區(qū)域在內的面積為()A. B. C. D.12.某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢二、填空題:本題共4小題,每小題5分,共20分。13.三棱錐中,點是斜邊上一點.給出下列四個命題:①若平面,則三棱錐的四個面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認為正確命題的序號都填上)14.已知是定義在上的奇函數,當時,,則不等式的解集用區(qū)間表示為__________.15.已知向量,,若,則______.16.函數的定義域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.18.(12分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設點為拋物線的焦點,當面積最小時,求直線的方程.19.(12分)已知在等比數列中,.(1)求數列的通項公式;(2)若,求數列前項的和.20.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.21.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.22.(10分)已知數列滿足,且,,成等比數列.(1)求證:數列是等差數列,并求數列的通項公式;(2)記數列的前n項和為,,求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.2.A【解析】
由得,然后分子分母同時乘以分母的共軛復數可得復數,從而可得的虛部.【詳解】因為,所以,所以復數的虛部為.故選A.【點睛】本題考查了復數的除法運算和復數的概念,屬于基礎題.復數除法運算的方法是分子分母同時乘以分母的共軛復數,轉化為乘法運算.3.C【解析】
化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數的化簡和對應象限,意在考查學生的計算能力.4.C【解析】
先求集合A,再用列舉法表示出集合B,再根據交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎題.5.A【解析】
根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx6.B【解析】
根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【點睛】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.7.C【解析】
根據不動點的定義,利用換底公式分離參數可得;構造函數,并討論的單調性與最值,畫出函數圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當時,,則在內單調遞增;當時,,則在內單調遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數新定義的應用,由導數確定函數的單調性與最值,分離參數法與構造函數方法的應用,屬于中檔題.8.D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據數形結合的方法求解問題,即把y+1x-29.A【解析】,故,故選A.10.A【解析】
由計算出的取值范圍,利用正弦函數的基本性質可求得函數的值域.【詳解】,,,因此,函數的值域為.故選:A.【點睛】本題考查正弦型函數在區(qū)間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.11.B【解析】
根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據公共切線求參數,考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.12.D【解析】
根據折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點睛】本題考查了折線圖,意在考查學生的理解能力.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
對①,由線面平行的性質可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結合外接球半徑公式即可求解;對③,結合題意作出圖形,由勾股定理和內接圓對應面積公式求出錐體的高,則可求解;對④,由動點分析可知,當點與點重合時,直線與平面所成的角最大,結合幾何關系可判斷錯誤;【詳解】對于①,因為平面,所以,,,又,所以平面,所以,故四個面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設內心是,則平面,連接,則有,又內切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時,點與點重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點睛】本題考查立體幾何基本關系的應用,線面垂直的性質及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題14.【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(15.1【解析】
根據向量加法和減法的坐標運算,先分別求得與,再結合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎題.16.【解析】
根據函數成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數成立的條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)求得點的坐標,可得出直線的方程,與拋物線的方程聯立,結合求出正實數的值,進而可得出拋物線的方程;(2)設點,,設的方程為,將直線的方程與拋物線的方程聯立,列出韋達定理,結合求得的值,可得出直線所過定點的坐標,由此可得出點到直線的最大距離.【詳解】(1)易知點,又,所以點,則直線的方程為.聯立,解得或,所以.故拋物線的方程為;(2)設的方程為,聯立有,設點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當直線與軸垂直時,點到直線的最大距離為.【點睛】本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.18.(1);(2)【解析】
(1)設出兩點的坐標,由距離之積為16,可得.利用向量的數量積坐標運算,將轉化為.再利用兩點均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設出直線l的方程,代入拋物線方程,由韋達定理發(fā)現直線l恒過定點,將面積用參數t表示,求出其最值,并得出此時的直線方程.【詳解】解:(1)由題設,因為,到軸的距離的積為,所以,又因為,,,所以拋物線的方程為.(2)因為直線與拋物線兩個公共點,所以的斜率不為,所以設聯立,得,即,,即直線恒過定點,所以,當時,面積取得最小值,此時.【點睛】本題考查了拋物線的標準方程的求法,直線與拋物線相交的問題,其中垂直條件的轉化,直線過定點均為該題的關鍵,屬于綜合性較強的題.19.(1)(2)【解析】
(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【詳解】解:(1)設等比數列的公比為又因為,所以解得(舍)或所以,即(2)據(1)求解知,,所以所以【點睛】本題考查求等比數列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數列和等比數列的基本方法,務必掌握.20.(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據題設知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設平面的一個法向量,則令,則.因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版石油化工安全評價與隱患排查合同3篇
- 二零二五年度品牌推廣活動策劃與執(zhí)行合同3篇
- 二零二五版工藝品展覽館建設與運營管理合同3篇
- 二零二五年度電力工程建設項目融資合同2篇
- 二零二五年度4S店汽車租賃與綠色出行倡導合同3篇
- 二零二五版房地產開發(fā)項目掛靠合作保密協議合同3篇
- 2025年度特色餐飲品牌店面全面轉讓合同范本2篇
- 二零二五版物業(yè)公司應急處理合同3篇
- 二零二五版數據中心建設工程施工合同2篇
- 基于2025年度區(qū)塊鏈技術的電子勞動合同信任機制合同3篇
- 高二物理競賽霍爾效應 課件
- 金融數學-(南京大學)
- 基于核心素養(yǎng)下的英語寫作能力的培養(yǎng)策略
- 現場安全文明施工考核評分表
- 亞什蘭版膠衣操作指南
- 四年級上冊數學教案 6.1口算除法 人教版
- DB32-T 3129-2016適合機械化作業(yè)的單體鋼架塑料大棚 技術規(guī)范-(高清現行)
- 6.農業(yè)產值與增加值核算統計報表制度(2020年)
- 人工挖孔樁施工監(jiān)測監(jiān)控措施
- 供應商物料質量問題賠償協議(終端)
- 物理人教版(2019)必修第二冊5.2運動的合成與分解(共19張ppt)
評論
0/150
提交評論