版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),滿足約束條件,若的最大值為,則的展開式中項(xiàng)的系數(shù)為()A.60 B.80 C.90 D.1202.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.3.已知是定義是上的奇函數(shù),滿足,當(dāng)時,,則函數(shù)在區(qū)間上的零點(diǎn)個數(shù)是()A.3 B.5 C.7 D.94.已知點(diǎn)為雙曲線的右焦點(diǎn),直線與雙曲線交于A,B兩點(diǎn),若,則的面積為()A. B. C. D.5.設(shè)函數(shù)恰有兩個極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.6.已知集合,則=A. B. C. D.7.我國宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或8.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對稱;②函數(shù)是周期函數(shù);③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④9.已知集合,集合,則().A. B.C. D.10.已知正方體的棱長為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.11.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r,()A. B.2 C. D.12.函數(shù)的部分圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)M是曲線y=2lnx+x2﹣3x上一動點(diǎn),當(dāng)曲線在M處的切線斜率取得最小值時,該切線的方程為_______.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.15.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個整數(shù),則當(dāng)n最小時實(shí)數(shù)a的值為_____.16.在如圖所示的三角形數(shù)陣中,用表示第行第個數(shù),已知,且當(dāng)時,每行中的其他各數(shù)均等于其“肩膀”上的兩個數(shù)之和,即,若,則正整數(shù)的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列18.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線C的極坐標(biāo)方程是.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于兩點(diǎn)A,B,求線段的長.20.(12分)設(shè)橢圓的右焦點(diǎn)為,過的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.(1)當(dāng)直線的傾斜角為時,求線段AB的中點(diǎn)的橫坐標(biāo);(2)設(shè)點(diǎn)A關(guān)于軸的對稱點(diǎn)為C,求證:M,B,C三點(diǎn)共線;(3)設(shè)過點(diǎn)M的直線交橢圓于兩點(diǎn),若橢圓上存在點(diǎn)P,使得(其中O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.21.(12分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長;②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.22.(10分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項(xiàng)式定理計(jì)算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時,的最大值為,故.展開式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)為:.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃求最值,二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.2、A【解析】
設(shè),延長至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點(diǎn)睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.3、D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時,,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個,
故選D.【點(diǎn)睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.4、D【解析】
設(shè)雙曲線C的左焦點(diǎn)為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點(diǎn)為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.5、C【解析】
恰有兩個極值點(diǎn),則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€極值點(diǎn),所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時,恰有兩個極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.6、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運(yùn)算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點(diǎn)睛】不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.7、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時,由余弦弦定理得:,.當(dāng)時,由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.8、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯誤;函數(shù)定義域?yàn)?,最值點(diǎn)即為極值點(diǎn),由知③錯誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)椋?,為奇函?shù),圖象關(guān)于原點(diǎn)對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當(dāng)時,,,,此時與無交點(diǎn);當(dāng)時,,,,此時與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.9、A【解析】
算出集合A、B及,再求補(bǔ)集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點(diǎn)睛】本題考查集合的交集、補(bǔ)集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.10、A【解析】
根據(jù)球的特點(diǎn)可知截面是一個圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長的一半,所以球的半徑為,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計(jì)算.11、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗裕?,?dāng)時,等號成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.12、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻?,故奇函數(shù),四個圖像均符合。當(dāng)時,,,排除C、D當(dāng)時,,,排除A。故選B?!军c(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求導(dǎo)數(shù)可得切線斜率,利用基本不等式可得切點(diǎn)橫坐標(biāo),從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點(diǎn)處的導(dǎo)數(shù)值等于切線的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時,,不滿足對任意的正整數(shù)均有.所以.當(dāng)時,證明:對任意的正整數(shù)都有.當(dāng)時,成立.假設(shè)當(dāng)時結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結(jié)合參數(shù)的范圍問題進(jìn)行分析.屬于難題.15、-1【解析】
討論三種情況,a<0時,根據(jù)均值不等式得到a(﹣a)≤﹣14,計(jì)算等號成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時,[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當(dāng)且僅當(dāng)﹣a,即a=﹣1時取等號,∴a的最大值為﹣4,當(dāng)且僅當(dāng)a4時,A中共含有最少個整數(shù),此時實(shí)數(shù)a的值為﹣1;②a=0時,﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無窮多,故a=0不符合條件;③a>0時,[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.16、2022【解析】
根據(jù)條件先求出數(shù)列的通項(xiàng),利用累加法進(jìn)行求解即可.【詳解】,,,下面求數(shù)列的通項(xiàng),由題意知,,,,,,數(shù)列是遞增數(shù)列,且,的最小值為.故答案為:.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,結(jié)合數(shù)列的性質(zhì)求出數(shù)列的通項(xiàng)是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=(2)Tn【解析】
(1)利用an與Sn的遞推關(guān)系可以an的通項(xiàng)公式;P點(diǎn)代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點(diǎn)P(bn,bn+1則數(shù)列{bn(2)因?yàn)閏n=b則13兩式相減得:23所以Tn【點(diǎn)睛】用遞推關(guān)系an=Sn-18、(1);(2)【解析】
(1)分類討論去絕對值號,即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時,不等式可化為,得,無解;②當(dāng)-2≤x≤1時,不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時,不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時,又當(dāng)時,取得最小值,且又所以當(dāng)時,與同時取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.19、(1)l:,C:;(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;
(2)由(1)可得曲線是圓,求出圓心坐標(biāo)及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.∴圓心到直線的距離為:.∴【點(diǎn)睛】本題考查直線的普通坐標(biāo)方程、曲線的直角坐標(biāo)方程的求法,考查弦長的求法、運(yùn)算求解能力,是中檔題.20、(1)AB的中點(diǎn)的橫坐標(biāo)為;(2)證明見解析;(3)【解析】
設(shè).(1)因?yàn)橹本€的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點(diǎn)的橫坐標(biāo)為.(2)根據(jù)題意得點(diǎn),若直線AB的斜率為0,則直線AB的方程為,A、C兩點(diǎn)重合,顯然M,B,C三點(diǎn)共線;若直線AB的斜率不為0,設(shè)直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設(shè)直線BM、CM的斜率分別為、,則,即=,即M,B,C三點(diǎn)共線.(3)根據(jù)題意,得直線GH的斜率存在,設(shè)該直線的方程為,設(shè),聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結(jié)合,得,當(dāng)時,該直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通訊行業(yè)營業(yè)員崗位總結(jié)
- 幼兒園工作總結(jié)點(diǎn)亮孩子未來的希望
- 醫(yī)療器械行業(yè)技術(shù)崗位總結(jié)
- 2024校園消防安全應(yīng)急預(yù)案(34篇)
- 減資協(xié)議書(2篇)
- 別墅區(qū)住宅租賃協(xié)議(2篇)
- 全民讀書心得體會
- Unit1TeenageLife(詞匯短語句式)-2025屆高三人教版英語一輪復(fù)習(xí)闖關(guān)攻略(解析版)
- 第9課 列寧與十月革命(分層作業(yè))(解析版)
- 2023-2024學(xué)年北京市昌平區(qū)高三上學(xué)期期末考試地理試題(解析版)
- 工會經(jīng)費(fèi)收支預(yù)算表
- 舒爾特方格55格200張?zhí)岣邔W⒘4紙直接打印版
- 質(zhì)量管理體系各條款的審核重點(diǎn)
- 聚丙烯化學(xué)品安全技術(shù)說明書(MSDS)
- 流動資金測算公式
- BBC美麗中國英文字幕
- 衛(wèi)生院工程施工組織設(shè)計(jì)方案
- CDR-臨床癡呆評定量表
- 《八年級下學(xué)期語文教學(xué)個人工作總結(jié)》
- 鋁合金門窗制作工藝卡片 - 修改
- 恒亞水泥廠電工基礎(chǔ)試題
評論
0/150
提交評論