2023屆重慶江北區(qū)高考考前提分數(shù)學仿真卷含解析_第1頁
2023屆重慶江北區(qū)高考考前提分數(shù)學仿真卷含解析_第2頁
2023屆重慶江北區(qū)高考考前提分數(shù)學仿真卷含解析_第3頁
2023屆重慶江北區(qū)高考考前提分數(shù)學仿真卷含解析_第4頁
2023屆重慶江北區(qū)高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°2.已知復數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.13.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關于點成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關于原點成中心對稱4.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.5.若集合,,則下列結論正確的是()A. B. C. D.6.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.17.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.9.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1710.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.11.已知,,則()A. B. C. D.12.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,則與的夾角為.14.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.15.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.16.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數(shù)的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.18.(12分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))19.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)已知函數(shù).(Ⅰ)當時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.21.(12分)設函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.22.(10分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.2、C【解析】

利用復數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復數(shù)的虛部為.故選:C.【點睛】本題考查復數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎題.3、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關鍵,著重考查了數(shù)形結合思想,以及運算與求解能力,屬于基礎題.4、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.5、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.6、B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數(shù)量積的計算,考查圓的方程,屬于基礎題.7、A【解析】

試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系8、C【解析】

利用線線、線面、面面相應的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質(zhì)定理,是一道基礎題.9、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應用,屬于基礎題.10、D【解析】

根據(jù)向量垂直則數(shù)量積為零,結合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎題.11、D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.12、A【解析】

利用數(shù)列的遞推關系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關系式的應用,數(shù)列累加法以及通項公式的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)已知條件,去括號得:,14、【解析】

計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數(shù)的有界性是解題的關鍵.15、【解析】

根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數(shù)定義可知,因為,則,所以由同角三角函數(shù)關系式可得,所以故答案為:.【點睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關系式的應用,余弦差角公式的應用,屬于中檔題.16、【解析】

先求出所有的基本事件個數(shù),再求出“抽取的三張卡片編號之和是偶數(shù)”這一事件包含的基本事件個數(shù),利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數(shù)”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數(shù)”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】

(1)取中點,連,可得,結合平面EAD⊥平面ABCD,可證平面ABCD,進而有,再由底面是菱形可得,可得,可證得平面,即可證明結論;(2)設底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結論.【詳解】(1)取中點,連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點,,平面,平面平面,;(2)設菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【點睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關系之間的相互轉化,體積問題要熟練應用等體積方法,屬于中檔題.18、(1);(2).【解析】

(1)首先對函數(shù)求導,根據(jù)函數(shù)存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實數(shù)a的取值范圍是.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的極值點和單調(diào)性,利用函數(shù)單調(diào)性證明不等式,屬于難題.19、(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.20、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)首先求得導函數(shù),然后結合導函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數(shù),結合函數(shù)的性質(zhì)確定實數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數(shù)在上單調(diào)遞減;當時,由得:;由得:.∴當時,函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當時,函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當時,,即又∵,∴實數(shù)的取值范圍是:.【點睛】本題主要考查導函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學思想,等價轉化的數(shù)學思想等知識,屬于中等題.21、(Ⅰ)當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導數(shù)的計算、利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導,再對a進行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導數(shù)判斷函數(shù)的單調(diào)性,從而證明結論,第(Ⅲ)問,構造函數(shù)=(),利用導數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當時,>0.當,時,=.故當>在區(qū)間內(nèi)恒成立時,必有.當時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當時,令=().當時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當時,=>0,即>恒成立.綜上,.【考點】導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點睛】本題考查導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結論縮小參數(shù)取值范圍.比較新穎,學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論