下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省佛山市獅山高級(jí)中學(xué)2021-2022學(xué)年高三數(shù)學(xué)理模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.如圖所示為某幾何體的三視圖,其體積為48π,則該幾何體的表面積為()A.24π B.36π C.60π D.78π參考答案:D【考點(diǎn)】由三視圖求面積、體積.【分析】由三視圖知該幾何體是一個(gè)圓柱挖掉兩個(gè)頂點(diǎn)相同的圓錐所得的組合體,由三視圖求出幾何元素的長(zhǎng)度,設(shè)圓錐的底面半徑是r,由柱體、錐體的體積公式和幾何體的體積是求出列出方程求出r,由圓柱、圓錐的側(cè)面積該幾何體的表面積.【解答】解:根據(jù)三視圖可知幾何體是:一個(gè)圓柱挖掉兩個(gè)頂點(diǎn)相同的圓錐所得的組合體,且底面分別是圓柱的上下底面所得的組合體,圓柱的高是8、圓錐的高是4,設(shè)圓柱、圓錐的底面半徑是r,∵體積為48π,∴=48π,解得r=3,則圓錐的母線長(zhǎng)是=5,∴該幾何體的表面積S=2π×3×8+2×π×3×5=78π,故選:D.2.函數(shù)的圖象大致為(
)A.
B.
C.
D.參考答案:D3.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為(
)A.2 B. C.6 D.8參考答案:A【分析】先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.4.已知向量a=(2,1),b=(3,2),若a(a+b),則實(shí)數(shù)等于(
)A.
B.
C.
D.
參考答案:D5.設(shè)變量、滿足線性約束條件,則目標(biāo)函數(shù)的最小值為A.
B.
C.
D.參考答案:D略6.從集合{1,2,3,…,11}中的任意取兩個(gè)元素作為橢圓方程中的和,則能組成落在矩形區(qū)域內(nèi)的橢圓的個(gè)數(shù)是A、43
B、72
C、86
D、90參考答案:答案:B7.對(duì)某商店一個(gè)月內(nèi)每天的顧客人數(shù)進(jìn)行了統(tǒng)計(jì),得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)、眾數(shù)、極差分別是()A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53參考答案:A【考點(diǎn)】莖葉圖;眾數(shù)、中位數(shù)、平均數(shù);極差、方差與標(biāo)準(zhǔn)差.【分析】直接利用莖葉圖求出該樣本的中位數(shù)、眾數(shù)、極差,即可.【解答】解:由題意可知莖葉圖共有30個(gè)數(shù)值,所以中位數(shù)為第15和16個(gè)數(shù)的平均值:=46.眾數(shù)是45,極差為:68﹣12=56.故選:A.【點(diǎn)評(píng)】本題考查該樣本的中位數(shù)、眾數(shù)、極差,莖葉圖的應(yīng)用,考查計(jì)算能力.8.給出下列四個(gè)命題:①若集合、滿足,則;
②給定命題,若“”為真,則“”為真;③設(shè),若,則;④若直線與直線垂直,則.
其中正確命題的個(gè)數(shù)是(
)A、1
B、2
C、3
D、4參考答案:B略9.已知函數(shù),若,不等式恒成立,則實(shí)數(shù)m的取值范圍是
(A)
(B)
(C)
(D)
參考答案:【知識(shí)點(diǎn)】導(dǎo)數(shù)
B11D解析:根據(jù)恒成立,所以函數(shù)在時(shí)單調(diào)遞增,所以,不等式恒成立,所以D正確.【思路點(diǎn)撥】根據(jù)函數(shù)的導(dǎo)數(shù)確定函數(shù)的單調(diào)性,確定在定義域下的取值,最后再求出m的取值范圍.10.十七世紀(jì)英國(guó)著名數(shù)學(xué)家、物理學(xué)家牛頓創(chuàng)立的求方程近似解的牛頓迭代法,相較于二分法更具優(yōu)勢(shì),如圖給出的是利用牛頓迭代法求方程x2=6的正的近似解的程序框圖,若輸入a=2,?=0.02,則輸出的結(jié)果為()A.3 B.2.5 C.2.45 D.2.4495參考答案:C【考點(diǎn)】程序框圖.【分析】由題意,模擬程序的運(yùn)行過程,依次寫出每次循環(huán)得到的b,a,z的值,即可得出跳出循環(huán)時(shí)輸出a的值.【解答】解:模擬程序的運(yùn)行,可得a=2,?=0.02,執(zhí)行循環(huán)體,b=2,a=,z=,不滿足條件z≤?,執(zhí)行循環(huán)體,b=,a=,z=,滿足條件z≤?,退出循環(huán),輸出a的值為=2.45.故選:C.二、填空題:本大題共7小題,每小題4分,共28分11.(坐標(biāo)系與參數(shù)方程選講選做題)曲線:(為參數(shù))的普通方程為
▲
.參考答案:12.直線經(jīng)過橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則橢圓的離心率為____
___;參考答案:略13.如圖:兩圓相交于點(diǎn)、,直線與分別與兩圓交于點(diǎn)、和、,,則
.參考答案:3由題設(shè)得,,,.14.已知函數(shù)f(x)在(0,2)上是增函數(shù),且是偶函數(shù),則、、的大小順序是
(按從小到大的順序).參考答案:15.將等比數(shù)列{an}的各項(xiàng)排成如圖所示的三角形數(shù)陣,,則數(shù)陣的第5行所有項(xiàng)之和為參考答案:992【考點(diǎn)】89:等比數(shù)列的前n項(xiàng)和.【分析】由題意可的第5行a11,a12,a13,a14,a15,再根據(jù)等比數(shù)列的前n項(xiàng)和公式計(jì)算即可.【解答】解:由題意可的第5行a11,a12,a13,a14,a15,∵,∴a11=×210=32,∴a11+a12+a13+a14+a15==992故答案為:99216.函數(shù)的定義域?yàn)?/p>
參考答案:17.如圖,在矩形中,點(diǎn)為的中點(diǎn),點(diǎn)在邊上,若,則的值是
.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.如圖,在三棱柱ABC﹣A1B1C1中,B1B=B1A=BA=BC=2,∠B1BC=90°,D為AC的中點(diǎn),AB⊥B1D.(Ⅰ)求證:平面ABC⊥平面ABB1A1;(Ⅱ)求B到平面AB1D的距離.參考答案:考點(diǎn):點(diǎn)、線、面間的距離計(jì)算;平面與平面垂直的判定.專題:綜合題;空間位置關(guān)系與距離.分析:(Ⅰ)取AB中點(diǎn)為O,連接OD,OB1,證明AB⊥平面B1OD,可得AB⊥OD,又OD⊥BB1,因?yàn)锳B∩BB1=B,即可證明平面ABB1A1⊥平面ABC;(Ⅱ)利用=,求B到平面AB1D的距離.解答: (Ⅰ)證明:取AB中點(diǎn)為O,連接OD,OB1.因?yàn)锽1B=B1A,所以O(shè)B1⊥AB.又AB⊥B1D,OB1∩B1D=B1,所以AB⊥平面B1OD,因?yàn)镺D?平面B1OD,所以AB⊥OD,由已知,BC⊥B1B,又OD∥BC,所以O(shè)D⊥⊥B1B,因?yàn)锳B∩B1B=B,所以O(shè)D⊥平面ABB1A1.又OD?平面ABC,所以平面平面ABC⊥平面ABB1A1;…(Ⅱ)解:由(Ⅰ)知,B1O=,S△ABC==2,B1A=2,AC=B1C=2,=,因?yàn)锽1O⊥平面ABC,所以==,設(shè)B到平面AB1D的距離是d,則==d,得B到平面AB1D的距離d=.…點(diǎn)評(píng):本題考查平面與平面垂直的證明,考查三棱錐的體積,解題時(shí)要認(rèn)真審題,注意空間思維能力的合理運(yùn)用.19.如圖,四棱錐S﹣ABCD的底面是邊長(zhǎng)為1的菱形,其中∠DAB=60°,SD垂直于底面ABCD,;(1)求四棱錐S﹣ABCD的體積;(2)設(shè)棱SA的中點(diǎn)為M,求異面直線DM與SB所成角的大小.參考答案:【考點(diǎn)】異面直線及其所成的角;棱柱、棱錐、棱臺(tái)的體積.【分析】(1)求出BD=1,AC=,SD=,由此能求出四棱錐S﹣ABCD的體積.(2)取BC中點(diǎn)E,以D為原點(diǎn),DA為x軸,DE為y軸,DS為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線DM與SB所成角.【解答】解:(1)∵四棱錐S﹣ABCD的底面是邊長(zhǎng)為1的菱形,其中∠DAB=60°,SD垂直于底面ABCD,,∴BD=1,AC==,SD==,S菱形ABCD===,∴四棱錐S﹣ABCD的體積V===.(2)取BC中點(diǎn)E,以D為原點(diǎn),DA為x軸,DE為y軸,DS為z軸,建立空間直角坐標(biāo)系,A(1,0,0),S(0,0,),M(),B(,,0),=(),=(,﹣),設(shè)異面直線DM與SB所成角為θ,則cosθ===,,∴異面直線DM與SB所成角為.20.已知函數(shù)(且)(1)若f(x)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)若f(x)有兩個(gè)不同的極值點(diǎn),記過點(diǎn),的直線的斜率為k,求證:.參考答案:(1)(2)證明見解析【分析】(1)由在上恒成立,再轉(zhuǎn)化為求函數(shù)最值.(2)由(1)知時(shí)函數(shù)有兩個(gè)極值點(diǎn),,不妨設(shè),從而有,求出,并湊配出,這樣只要證明,再利用函數(shù)在單調(diào)性可證明.【詳解】解:定義域,由在定義域內(nèi)單調(diào)遞增,等價(jià)于對(duì)任意,都有,即恒成立,而,故,又,所以.(2)定義域,設(shè),其判別式,當(dāng)時(shí),由(1)得由在定義域內(nèi)單調(diào)遞增,無極值點(diǎn),當(dāng)時(shí),,兩根為,,當(dāng)時(shí),上;當(dāng)時(shí),;當(dāng)時(shí),.故在單調(diào)遞增,在單調(diào)遞減.即是函數(shù)的極值點(diǎn),不妨設(shè),則且.,所以,而,而且得,故,所以,.設(shè),(),而,所以在上單調(diào)遞增,所以,而,故.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)的問題,解題時(shí)需確定存在兩個(gè)極值點(diǎn)的條件,極值點(diǎn)的關(guān)系,以便轉(zhuǎn)化為一元函數(shù),再由函數(shù)的知識(shí)獲得證明.21.(本題滿分12分)如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,.(Ⅰ)求證:平面平面;(Ⅱ)當(dāng)?shù)拈L(zhǎng)為何值時(shí),平面與平面所成的銳二面角的大小為?
參考答案:解:(Ⅰ)證明:平面平面,,平面平面=,∴平面.平面,∴,又為圓的直徑,∴,∴平面.平面,∴平面平面.
…………5分(Ⅱ)設(shè)中點(diǎn)為,以為坐標(biāo)原點(diǎn),、、方向分別為軸、軸、軸方向建立空間直角坐標(biāo)系(如圖).設(shè),則點(diǎn)的坐標(biāo)為,,又,
…………7分設(shè)平面的法向量為,則,.即
令,解得.
………………9分由(I)可知平面,取平面的一個(gè)法向量為.,即,解得,即時(shí),平面與平面所成的銳二面角的大小為.
………………12分略22.(14分)設(shè)函數(shù)R)在其圖象上一點(diǎn)A處切線的斜率為-1.(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在區(qū)間(b-1,b)內(nèi)的極值.參考答案:解析:(Ⅰ)解:函數(shù)的導(dǎo)數(shù),
--------2分
由題意,得,
所以,
故;
-----------5分(Ⅱ)解:由(Ⅰ)知,
由,得x=1,或x=3.
x變化時(shí),的變化如情況下表:
13
0
-
0
+
極大值極小值0
----------8分所以,當(dāng)b1或時(shí),函數(shù)無
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年腫瘤類生物制品項(xiàng)目建議書
- 2025幼兒園采購合同協(xié)議書
- 2025屆江蘇省新沂市第四中學(xué)中考生物四模試卷含解析
- 2025年甲基丙烯酸甲酯合作協(xié)議書
- 地鐵隧道維修加固合同
- 2025年皮革、毛皮及其制品項(xiàng)目合作計(jì)劃書
- 辦公樓入駐企業(yè)健康篩查承諾書
- 體育賽事現(xiàn)場(chǎng)急救聘用合同醫(yī)生
- 工廠消防設(shè)施安裝合同范本
- 酒店綠化維修合同
- 2024秋期國(guó)家開放大學(xué)專科《法律咨詢與調(diào)解》一平臺(tái)在線形考(形考任務(wù)1至4)試題及答案
- 七年級(jí)全冊(cè)語文古詩詞
- 銷售業(yè)務(wù)拓展外包協(xié)議模板2024版版
- 體育大單元教學(xué)計(jì)劃(18課時(shí))
- 2024軟件維護(hù)合同范本
- 期末測(cè)評(píng)-2024-2025學(xué)年統(tǒng)編版語文三年級(jí)上冊(cè)
- 人教版初中美術(shù)八年級(jí)上冊(cè) 第一單元 第1課 造型的表現(xiàn)力 教案
- 云南省師范大學(xué)附屬中學(xué)2025屆高二生物第一學(xué)期期末聯(lián)考試題含解析
- 人教部編版初中八年級(jí)生物上冊(cè)知識(shí)梳理
- 陜西省西安市未央?yún)^(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末科學(xué)試題
- 四年級(jí)上冊(cè)音樂教案 第七單元 送別蘇少版
評(píng)論
0/150
提交評(píng)論