廣東省梅州市興林中學(xué)2021年高二數(shù)學(xué)文聯(lián)考試題含解析_第1頁
廣東省梅州市興林中學(xué)2021年高二數(shù)學(xué)文聯(lián)考試題含解析_第2頁
廣東省梅州市興林中學(xué)2021年高二數(shù)學(xué)文聯(lián)考試題含解析_第3頁
廣東省梅州市興林中學(xué)2021年高二數(shù)學(xué)文聯(lián)考試題含解析_第4頁
廣東省梅州市興林中學(xué)2021年高二數(shù)學(xué)文聯(lián)考試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省梅州市興林中學(xué)2021年高二數(shù)學(xué)文聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.若a>0,b>0,且函數(shù)在x=1處有極值,則ab的最大值(

)A.2

B.3

C.6

D.9參考答案:D2.△中,角成等差數(shù)列是成立的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件參考答案:A略3.(理科)執(zhí)行右面的程序框圖,如果輸入的N=4,那么輸出的S=A.1

B.1+C.1++++

D.1++++參考答案:B4.在各項都不為0的等差數(shù)列{an}中,,數(shù)列{bn}是等比數(shù)列,且,則=

(

)A.2 B.4 C.8 D.16參考答案:D5.甲、乙兩人進行三打二勝制乒乓球賽,已知每局甲取勝的概率為0.6,乙取勝的概率為0.4,那么最終甲勝乙的概率為A.0.36

B.0.216

C.0.432

D.0.648參考答案:D6.已知直線l1:和l2:互相平行,則實數(shù)m=A.m=-1或3 B.m=-1C.m=-3 D.m=1或m=-3參考答案:A由題意得:,選A.7.下列說法正確的是A.一個命題的逆命題為真,則它的否命題為假B.一個命題的逆命題為真,則它的逆否命題為真C.一個命題的逆否命題為真,則它的否命題為真D.一個命題的否命題為真,則它的逆命題為真參考答案:D

8.若函數(shù)在區(qū)間上有最小值,則實數(shù)的取值范圍是(

)A.

B.

C.

D.

參考答案:C略9.若圓與軸的兩交點位于原點的同側(cè),則實數(shù)的取值范圍是(

)A.

B.

C.

D.或參考答案:D10.在等比數(shù)列{an}中,a1=1,a5=16,則公比q為()A.±2 B.3 C.4 D.8參考答案:A【考點】等比數(shù)列的通項公式.【分析】利用等比數(shù)列的通項公式即可得出.【解答】解:∵a1=1,a5=16,∴16=q4,解得q=±2.故選:A.【點評】本題考查了等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本大題共7小題,每小題4分,共28分11.(理)的展開式中,系數(shù)是有理數(shù)的項共有項.參考答案:4

略12.某班委會由4名男生與3名女生組成,現(xiàn)從中選出2人擔(dān)任正副班長,其中至少有1名女生當(dāng)選的概率是______________參考答案:13.對于△ABC,有如下命題:①若sin2A=sin2B,則△ABC為等腰三角形;

②若sinA=cosB,則△ABC為直角三角形;③若sin2A+sin2B+cos2C<1,則△ABC為鈍角三角形.其中正確命題的序號是.(把你認為所有正確的都填上)參考答案:③【考點】命題的真假判斷與應(yīng)用.【分析】①若sin2A=sin2B,則2A=2B,或2A+2B=π,即A=B或C=,可知①不正確.②若sinA=cosB,找出∠A和∠B的反例,即可判斷則△ABC是直角三角形錯誤,故②不正確.③由sin2A+sin2B+cos2C<1,結(jié)合正弦定理可得a2+b2<c2,再由余弦定理可得cosC<0,所以C為鈍角.【解答】解:①若sin2A=sin2B,則2A=2B,或2A+2B=π,即A=B或C=,故△ABC為等腰三角形或直角三角形,故①不正確.②若sinA=cosB,例如∠A=100°和∠B=10°,滿足sinA=cosB,則△ABC不是直角三角形,故②不正確.③由sin2A+sin2B+cos2C<1可得sin2A+sin2B<sin2C由正弦定理可得a2+b2<c2再由余弦定理可得cosC<0,C為鈍角,命題③正確.故答案為:③.14.在△ABC中,已知sinA+sinBcosC=0,則tanA的最大值為.參考答案:由sinA+sinBcosC=0,利用三角形內(nèi)角和定理與誘導(dǎo)公式可得:sin(B+C)=﹣sinBcosC,展開化為:2sinBcosC=﹣cosBsinC,因此2tanB=﹣tanC,由tanA=﹣tan(B+C)展開代入利用基本不等式的性質(zhì)即可得出答案.解:由sinA+sinBcosC=0,得,∴C為鈍角,A,B為銳角且sinA=﹣sinBcosC.又sinA=sin(B+C),∴sin(B+C)=﹣sinBcosC,即sinBcosC+cosBsinC=﹣sinBcosC,∴2sinBcosC=﹣cosBsinC∴2tanB=﹣tanC∴tanA=﹣tan(B+C)===,∵tanB>0,根據(jù)均值定理,,∴,當(dāng)且僅當(dāng)時取等號.∴tanA的最大值為.故答案為:.15.=

。參考答案:略16.設(shè)a>b>0,m=,n=-,則m,n的大小關(guān)系是m______n。(選>,=,<)參考答案:>略17.過點M(1,2)的直線l與圓C:(x-2)2+y2=9交于A、B兩點,C為圓心,當(dāng)∠ACB最小時,直線l的方程為_____________________參考答案:x-2y+3=0略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.(1)右面是解決該問題的一個程序,但有3處錯誤,請找出錯誤并予以更正;(2)畫出執(zhí)行該問題的程

參考答案:解析:(1)錯誤1

S=1,改為S=0;錯誤2

S≥500,改為

S≤500;錯誤3

輸出

n+1,改為

輸出

n;(2)

19.已知函數(shù)f(x)=(2x+b)ex,F(xiàn)(x)=bx﹣lnx,b∈R.(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;(2)若F(x+1)>b對任意x∈(0,+∞)恒成立,求b的取值范圍.參考答案:【考點】6E:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;6B:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.【分析】(1)求出函數(shù)f(x)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,再求出函數(shù)F(x)的導(dǎo)函數(shù),由b<0,可得F′(x)<0,則F(x)在定義域(0,+∞)上為減函數(shù),要使存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,需>0,求解可得b的范圍;(2)由F(x+1)>b對任意x∈(0,+∞)恒成立,可得bx﹣ln(x+1)>0對任意x∈(0,+∞)恒成立,令g(x)=bx﹣ln(x+1),求導(dǎo)可得b≤0時,g′(x)<0,g(x)在(0,+∞)上為減函數(shù),而g(0)=0,不合題意;0<b<1時,=1﹣b+lnb>0,得b∈?;b≥1時,g(x)在(0,+∞)上為增函數(shù),g(x)>g(0)=0成立,從而可得b的取值范圍.【解答】解:(1)f(x)=(2x+b)ex,f′(x)=(2x+b+2)ex,∴當(dāng)x∈(﹣∞,﹣)時,f′(x)<0,當(dāng)x∈(﹣,+∞)時,f′(x)>0,∴f(x)的減區(qū)間為(﹣∞,﹣),增區(qū)間為(﹣,+∞).F(x)的定義域為(0,+∞),且F′(x)=b﹣.∵b<0,∴F′(x)<0,則F(x)在定義域(0,+∞)上為減函數(shù),要使存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,則>0,即b<﹣2.∴b的取值范圍是(﹣∞,﹣2);(2)F(x+1)=b(x+1)﹣ln(x+1).要使F(x+1)>b對任意x∈(0,+∞)恒成立,即bx﹣ln(x+1)>0對任意x∈(0,+∞)恒成立,令g(x)=bx﹣ln(x+1),則g′(x)=b﹣(x>0).若b≤0,則g′(x)<0,g(x)在(0,+∞)上為減函數(shù),而g(0)=0,不合題意;若0<b<1,則當(dāng)x∈(0,)時,g′(x)<0,當(dāng)x∈(,+∞)時,g′(x)>0,∴=1﹣b+lnb>0,得b∈?;若b≥1,則,g′(x)>0在(0,+∞)恒成立,g(x)在(0,+∞)上為增函數(shù),g(x)>g(0)=0.綜上,b的取值范圍是[1,+∞).20.已知橢圓C:的離心率為,過右焦點且垂直于x軸的直線被橢圓所截得的弦長為3.(1)求橢圓C的方程;(2)A,B兩點分別為橢圓C的左右頂點,P為橢圓上異于A,B的一點,記直線PA,PB的斜率分別為kPA,kPB,求kPA?kPB的值.參考答案:【考點】橢圓的簡單性質(zhì);橢圓的標(biāo)準方程.【分析】(1)由橢圓的離心率公式及通徑公式,聯(lián)立即可求得a和b的值,求得橢圓方程;(2)根據(jù)直線的斜率公式,由y2=3(1﹣),代入即可求得kPA?kPB的值.【解答】解:(1)由橢圓離心率e===,則a2=2b2,過右焦點且垂直于x軸的直線被橢圓所截得的弦長為3,=3,解得:a2=4,b2=,∴橢圓C的方程;(2)由(1)有A,B兩點坐標(biāo)為A(﹣2,0),B(2,0),設(shè)P坐標(biāo)為(x,y),則直線PA,PB斜率分別為kPA=,kPA=,∴kPA?kPB=,又因為點P在橢圓C上,則y2=3(1﹣),∴kPA?kPB===﹣,21.(20分)設(shè),定義,

1)求的最小值;2)在條件下,求的最小值;3)在條件下,求的最小值,并加以證明。參考答案:解析:1)

-----------------------------------5分(當(dāng)時,取到最小值)

2)

----------

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論