廣東省汕頭市濱海中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析_第1頁
廣東省汕頭市濱海中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析_第2頁
廣東省汕頭市濱海中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析_第3頁
廣東省汕頭市濱海中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析_第4頁
廣東省汕頭市濱海中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省汕頭市濱海中學(xué)2022-2023學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.函數(shù)f(x)=|x-1|的圖象是()參考答案:B2.若在上是減函數(shù),則的取值范圍是A.(3,+∞)

B.(5,+∞)

C.[3,+∞)

D.[5,+∞)參考答案:D3.設(shè)全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},則A∩(?UB)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}參考答案:B【考點(diǎn)】交、并、補(bǔ)集的混合運(yùn)算.【分析】進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【解答】解:?RB={1,5,6};∴A∩(?RB)={1,2}∩{1,5,6}={1}.故選:B.4.在邊長(zhǎng)為1的正方形ABCD中,等于()A.0 B.1 C. D.3參考答案:B【考點(diǎn)】9A:向量的三角形法則.【分析】根據(jù)向量的加法法則即可求出【解答】解:利用向量加法的幾何性質(zhì),得++=∴=||=1,故選:B5.已知函數(shù)的定義域?yàn)?則函數(shù)的定義域?yàn)?/p>

A.

B.

C.

D.參考答案:B略6.同時(shí)擲兩個(gè)骰子,向上點(diǎn)數(shù)和為5的概率是:(

)A、

B、

C、

D、參考答案:B略7.數(shù)列{an}中,a2=2,a6=0且數(shù)列{}是等差數(shù)列,則a4=()A. B. C. D.參考答案:A【考點(diǎn)】8F:等差數(shù)列的性質(zhì).【分析】先求出數(shù)列{}的公差,進(jìn)而可得的值,進(jìn)而求出a4的值.【解答】解:設(shè)數(shù)列{}的公差為d,由4d=﹣得d=,∴=+2×,解得a4=.故選A【點(diǎn)評(píng)】本題主要考查等差數(shù)列的性質(zhì).屬基礎(chǔ)題.8.如果函數(shù)f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是減函數(shù),那么實(shí)數(shù)a取值范圍是()A.a(chǎn)≤﹣3 B.a(chǎn)≥﹣3 C.a(chǎn)≤5 D.a(chǎn)≥5參考答案:A【考點(diǎn)】二次函數(shù)的性質(zhì).【分析】先用配方法將二次函數(shù)變形,求出其對(duì)稱軸,再由“在(﹣∞,4]上是減函數(shù)”,知對(duì)稱軸必須在區(qū)間的右側(cè),求解即可得到結(jié)果.【解答】解:∵f(x)=x2+2(a﹣1)x+2=(x+a﹣1)2+2﹣(a﹣1)2其對(duì)稱軸為:x=1﹣a∵函數(shù)f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是減函數(shù)∴1﹣a≥4∴a≤﹣3故選A9.已知平面向量,,若與共線且方向相同,則x=(

)A.2

B.1

C.-1

D.-2參考答案:A10.已知對(duì)數(shù)式log(a﹣2)(10﹣2a)(a∈N)有意義,則a的值為()A.2<a<5 B.3 C.4 D.3或4參考答案:C【考點(diǎn)】函數(shù)的定義域及其求法;對(duì)數(shù)的概念.【分析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)得到關(guān)于a的不等式組,解出即可.【解答】解:要使對(duì)數(shù)式log(a﹣2)(10﹣2a)有意義,必須滿足:,解得:2<t<3或3<t<5,即t∈(2,3)∪(3,5),而a∈N,故a=4,故選:C.二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)2134與1455的最大公約數(shù)為m,則m化為五進(jìn)制數(shù)為.參考答案:342(5)

12.(4分)若loga≥1,則a的取值范圍是

.參考答案:≤a<1考點(diǎn): 對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn).專題: 函數(shù)的性質(zhì)及應(yīng)用.分析: 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行求解即可.解答: 解:loga≥1等價(jià)為loga≥logaa,若a>1,則等價(jià)為≥a,此時(shí)不成立,若0<a<1,則等價(jià)為≤a,即≤a<1,故答案為:≤a<1點(diǎn)評(píng): 本題主要考查對(duì)數(shù)不等式的求解,根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.13.已知點(diǎn)在圓上運(yùn)動(dòng),點(diǎn)在圓上運(yùn)動(dòng),則的最小值為

參考答案:略14.已知數(shù)列{an}的前n項(xiàng)和,則數(shù)列{an}的通項(xiàng)公式an=

.參考答案:

15.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2﹣2x,那么當(dāng)x>0時(shí),函數(shù)f(x)的解析式是.參考答案:【考點(diǎn)】函數(shù)解析式的求解及常用方法.【分析】先設(shè)x>0,則﹣x<0,根據(jù)x≤0時(shí)f(x)的解析式可求出x>0的解析式,用分段函數(shù)的形式表示出f(x).【解答】解:設(shè)x>0,則﹣x<0,∵當(dāng)x≤0時(shí),f(x)=x2﹣2x,∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,∵函數(shù)y=f(x)是偶函數(shù),∴f(x)=f(﹣x)=x2+2x,則,故答案為:.16.已知扇形的周長(zhǎng)等于它所在圓的周長(zhǎng)的一半,則這個(gè)扇形的圓心角是.參考答案:(π﹣2)rad【考點(diǎn)】G7:弧長(zhǎng)公式.【分析】由題意,本題中的等量關(guān)系是扇形的周長(zhǎng)等于弧所在的圓的半周長(zhǎng),可令圓心角為θ,半徑為r,弧長(zhǎng)為l,建立方程,求得弧長(zhǎng)與半徑的關(guān)系,再求扇形的圓心角.【解答】解:令圓心角為θ,半徑為r,弧長(zhǎng)為l由題意得2r+l=πr∴l(xiāng)=(π﹣2)r∴θ==π﹣2故答案為:(π﹣2)rad.17.已知_______.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時(shí)測(cè)得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600m后到達(dá)B處,測(cè)得此山頂在西偏北75°的方向上,仰角為30°,求此山的高度CD的長(zhǎng).參考答案:解:由題意得在又AB=600,由正弦定理得:在直角三角形DCB中即山的高度為m.

19.解下列關(guān)于的不等式.(1);(2);(3).參考答案:(1);(2);(3).試題解析:(1)原不等式等價(jià)于∴原不等式解集為(2)解不等式.去掉絕對(duì)值號(hào)得,∴原不等式等價(jià)于不等式組∴原不等式的解集為.(3)原不等式等價(jià)于∴原不等式解集為.考點(diǎn):不等式的解法.【方法點(diǎn)睛】解分式不等式的策略:化為整式不等式(注意轉(zhuǎn)化的等價(jià)性),符號(hào)法則,數(shù)軸標(biāo)根法.?dāng)?shù)軸標(biāo)根法的解題步驟:(1)首項(xiàng)系數(shù)化為“正”;(2)移項(xiàng)通分,不等號(hào)右側(cè)化為“”;(3)因式分解,化為幾個(gè)一次因式積的形式(十字相乘法、求根公式法、無法分解(法,配方法));(4)數(shù)軸標(biāo)根.本題考查含有絕對(duì)值的不等式、分式不等式的解法,屬于基礎(chǔ)題.20.已知函數(shù)f(x)=sin2x+asinx+3﹣a,x∈[0,π].(1)求f(x)的最小值g(a);(2)若f(x)在[0,π]上有零點(diǎn),求a的取值范圍.參考答案:【考點(diǎn)】三角函數(shù)的化簡(jiǎn)求值;函數(shù)零點(diǎn)的判定定理.【分析】(1)利用三角函數(shù)的值域,二次函數(shù)的性質(zhì),分類討論,求得f(x)的最小值g(a).(2)由題意可得sinx≠1,a=,令t=sinx∈[0,1),則a=,顯然函數(shù)a在t∈[0,1)上單調(diào)遞增,由此可得a的范圍.【解答】解:(1)∵函數(shù)f(x)=sin2x+asinx+3﹣a=﹣+3﹣a,∵x∈[0,π],∴sinx∈[0,1],當(dāng)﹣<0時(shí),即a>0時(shí),則sinx=0時(shí),f(x)取得最小值g(a)=3﹣a;當(dāng)0≤﹣≤1時(shí),即﹣2≤a≤0時(shí),則sinx=﹣時(shí),f(x)取得最小值g(a)=﹣+3﹣a;當(dāng)﹣>1時(shí),即a<﹣2時(shí),則sinx=1時(shí),f(x)取得最小值g(a)=4.綜上可得,g(a)=.(2)∵x∈[0,π],∴sinx∈[0,1],由f(x)=0,可得sin2x+3=(1﹣sinx)?a,當(dāng)sinx=1時(shí),此等式不成立.故有sinx≠1,a=,令t=sinx∈[0,1),則a=,顯然函數(shù)a在t∈[0,1)上單調(diào)遞增,故當(dāng)t=0時(shí),a=3;當(dāng)t趨于1時(shí),a趨于正無窮大,故a≥3.21.(本小題滿分12分)已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABCD是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE,點(diǎn)M是棱AD的中點(diǎn)(1)求異面直線ME與AB所成角的大小;(Ⅱ)證明:平面AED⊥平面ACD.

參考答案:(I)證明:取AC的中點(diǎn)F,連接BF,MF.因?yàn)辄c(diǎn)是棱的中點(diǎn),所以.又因?yàn)榈酌鏋橹苯翘菪危?,且,所?所以四邊形BFME是平行四邊形,所以.所以就是異面直線與所成角,……………6分而是等腰直角三角形,,所以.…………

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論