版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
雙重最值問(wèn)題的解決策略一、方法綜述形如求SKIPIF1<0等的問(wèn)題稱為“雙重最值問(wèn)題”.按其變?cè)膫€(gè)數(shù)可分為一元雙重最值問(wèn)題和多元雙重最值問(wèn)題.在本文中,提供一個(gè)常用的結(jié)論,取不同的值可得到很多命題.一個(gè)結(jié)論:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為正常數(shù),則(1)SKIPIF1<0;(2)SKIPIF1<0.證明:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等,即SKIPIF1<0.二、解題策略一、一元雙重最值問(wèn)題1.分段函數(shù)法:分類討論,將函數(shù)寫成分段函數(shù)形式,求函數(shù)值域即可.例1.對(duì)于a,bSKIPIF1<0R,記Max{a,b}=SKIPIF1<0,函數(shù)f(x)=Max{SKIPIF1<0,SKIPIF1<0}(xSKIPIF1<0R)的最小值是()(A).SKIPIF1<0(B).1(C).SKIPIF1<0(D).2【答案】C【解析】f(x)=Max{SKIPIF1<0,SKIPIF1<0}=SKIPIF1<0故答案為SKIPIF1<0.2.?dāng)?shù)形結(jié)合法:分別畫出幾個(gè)函數(shù)圖象,結(jié)合圖象直接看出最值點(diǎn),聯(lián)立方程組求出最值.例2.【2020河北正定一?!吭O(shè)函數(shù)f(x)=min{x2﹣1,x+1,﹣x+1},其中min{x,y,z}表示x,y,z中的最小者.若f(a+2)>f(a),則實(shí)數(shù)a的取值范圍為()A.(﹣1,0) B.[﹣2,0] C.(﹣∞,﹣2)∪(﹣1,0) D.[﹣2,+∞)【答案】C【解析】在同一坐標(biāo)系內(nèi)畫出三個(gè)函數(shù)y=1﹣x,y=x+1,y=x2﹣1的圖象,以此作出函數(shù)f(x)圖象,觀察最小值的位置,通過(guò)圖象平移,可得a<﹣1,且(a+2)2﹣1>a+1,①或﹣(a+2)+1>a2﹣1,②,解不等式即可得到所求范圍.f(x)=min{x2﹣1,x+1,﹣x+1}=,作出f(x)的圖象,可得f(a+2)>f(a)變?yōu)閍<﹣1,且(a+2)2﹣1>a+1,①或﹣(a+2)+1>a2﹣1,②①變?yōu)閍2+3a+2>0,解得a<﹣2;②變?yōu)閍2+a<0,解得﹣1<a<0.則實(shí)數(shù)a的取值范圍為(﹣∞,﹣2)∪(﹣1,0).二、多元一次函數(shù)的雙重最值問(wèn)題1.利用不等式的性質(zhì)例3.【2020江蘇模擬】設(shè)實(shí)數(shù)x1,x2,x3,x4,x5均不小于1,且x1·x2·x3·x4·x5=729,則max{x1x2,x2x3,x3x4,x4x5}的最小值是__________.【答案】9【解析】由SKIPIF1<0,所以SKIPIF1<0當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以最小值為SKIPIF1<02.利用絕對(duì)值不等式例4.【2020紹興模擬】設(shè)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值.【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,令SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)取等.3.利用均值不等式例5.設(shè)max{f(x),g(x)}=SKIPIF1<0,若函數(shù)n(x)=x2+px+q(p,q∈R)的圖象經(jīng)過(guò)不同的兩點(diǎn)(SKIPIF1<0,0)、(SKIPIF1<0,0),且存在整數(shù)n使得n<SKIPIF1<0<SKIPIF1<0<n+1成立,則()A.max{n(n),n(n+1)}>1B.max{n(n),n(n+1)}<1C.max{n(n),n(n+1)}>SKIPIF1<0D.max{n(n),n(n+1)}>SKIPIF1<0【答案】B4.利用柯西不等式例6.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,求SKIPIF1<0.解:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由柯西不等式得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等,即SKIPIF1<0.5.分類討論例7.若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值.解:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,=1\*GB3①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等;=2\*GB3②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等.綜上,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等,即SKIPIF1<0.6.待定系數(shù)法例8.若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值.7.構(gòu)造函數(shù)例9.【2020宜昌一?!恳阎瘮?shù)f(x,θ)=(x∈R,θ∈R),則f(x,θ)的最大值和最小值分別為?【解析】當(dāng)x=0時(shí),f(x,θ)==0,當(dāng)x≠0時(shí),f(x,θ)==,令u=,則|u|≥,即u≤﹣,或u≥,則f=,其意義為平面上單位圓上動(dòng)點(diǎn)(cosθ,sinθ)與(﹣u,0)點(diǎn)連線斜率k的倒數(shù),∵k∈(﹣∞,﹣]∪[,+∞),故f=∈[﹣,]故f(x,θ)的最大值和最小值分別為,﹣,8.利用韋達(dá)定理例10.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.解:注意到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的對(duì)稱性,故可設(shè)SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以方程SKIPIF1<0有兩個(gè)不大于SKIPIF1<0的實(shí)根,故SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0.9.?dāng)?shù)形結(jié)合例11.【2020?紹興二?!吭O(shè)函數(shù)f(x)=min{|x﹣2|,x2,|x+2|},其中min{x,y,z}表示x,y,z中的最小者.下列說(shuō)法錯(cuò)誤的是()A.函數(shù)f(x)為偶函數(shù) B.若x∈[1,+∞)時(shí),有f(x﹣2)≤f(x) C.若x∈R時(shí),f(f(x))≤f(x) D.若x∈[﹣4,4]時(shí),|f(x)﹣2|≥f(x)【答案】D【解析】在同一直角坐標(biāo)系中畫出y=|x﹣2|,y=x2,y=|x+2|,可得f(x)=,顯然f(﹣x)=f(x),可得f(x)為偶函數(shù);當(dāng)x≥1時(shí),f(x)=|x﹣2|,f(x﹣2)的圖象可看做f(x)的圖象右移2個(gè)單位得到,顯然x≥1時(shí),f(x)的圖象在f(x﹣2)圖象之上,則若x∈[1,+∞)時(shí),有f(x﹣2)≤f(x);若x∈R時(shí),f(x)≥0,可令t=f(x),由y=f(t)和y=t(t≥0),且y=t在曲線y=f(t)的上方,顯然f(f(x))≤f(x)成立;若x∈[﹣4,4],f(﹣4)=2,f(﹣4)﹣2=0,顯然f(﹣4)>|f(﹣4)﹣2|,則D不正確,故選:D.三、強(qiáng)化訓(xùn)練1.已知實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【解析】令SKIPIF1<0,原不等式整理得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,兩邊除以SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0為增函數(shù).又SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增,又SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0.則SKIPIF1<0.故選:B.2.已知函數(shù)y=f(x),若給定非零實(shí)數(shù)a,對(duì)于任意實(shí)數(shù)x∈M,總存在非零常數(shù)T,使得af(x)=f(x+T)恒成立,則稱函數(shù)y=f(x)是M上的a級(jí)T類周期函數(shù),若函數(shù)y=f(x)是[0,+∞)上的2級(jí)2類周期函數(shù),且當(dāng)x∈[0,2)時(shí),f(x)=SKIPIF1<0,又函數(shù)g(x)=﹣2lnx+SKIPIF1<0x2+x+m.若?x1∈[6,8],?x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,則實(shí)數(shù)m的取值范圍是()A.(﹣∞,SKIPIF1<0] B.(﹣∞,SKIPIF1<0] C.[SKIPIF1<0) D.[SKIPIF1<0)【答案】B【解析】根據(jù)題意,對(duì)于函數(shù)f(x),當(dāng)x∈[0,2)時(shí),SKIPIF1<0,
可得:當(dāng)0≤x≤1時(shí),f(x)=1-x2,有最大值f(0)=1,最小值f(1)=0,
當(dāng)1<x<2時(shí),f(x)=f(2-x),函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,則此時(shí)有0<f(x)<1,
又由函數(shù)y=f(x)是定義在區(qū)間[0,+∞)內(nèi)的2級(jí)類周期函數(shù),且T=2;
則在x∈[6,8)上,f(x)=23?f(x-6),則有0≤f(x)≤4,
則f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,
則函數(shù)f(x)在區(qū)間[6,8]上的最大值為8,最小值為0;
對(duì)于函數(shù)SKIPIF1<0,
有SKIPIF1<0,
得在(0,1)上,g′(x)<0,函數(shù)g(x)為減函數(shù),
在(1,+∞)上,g′(x)>0,函數(shù)g(x)為增函數(shù),
則函數(shù)g(x)在(0,+∞)上,由最小值SKIPIF1<0若?x1∈[6,8],?x2∈(0,+∞),使g(x2)-f(x1)≤0成立,
必有g(shù)(x)min≤f(x)max,即SKIPIF1<0解可得SKIPIF1<0,即m的取值范圍為SKIPIF1<0故選B.3.已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)設(shè)SKIPIF1<0的最大值為SKIPIF1<0,則當(dāng)SKIPIF1<0取到最小值時(shí)SKIPIF1<0()A.0 B.1 C.2 D.SKIPIF1<0【來(lái)源】浙江省寧波市華茂外國(guó)語(yǔ)學(xué)校2020屆高三下學(xué)期3月高考模擬數(shù)學(xué)試題【答案】A【解析】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)設(shè)SKIPIF1<0的最大值,在端點(diǎn)處或最低點(diǎn)處取得SKIPIF1<0SKIPIF1<0,最小值為2SKIPIF1<0,最小值為SKIPIF1<0SKIPIF1<0,最小值為4.5SKIPIF1<0,最小值SKIPIF1<0綜上可得,SKIPIF1<0取到最小值時(shí)SKIPIF1<00.故選:A4.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)為SKIPIF1<0增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0故選:D5.定義:SKIPIF1<0表示SKIPIF1<0,SKIPIF1<0兩數(shù)中較小的數(shù).例如SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,若對(duì)任意SKIPIF1<0,存在SKIPIF1<0,都有SKIPIF1<0成立,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【來(lái)源】湖南省常德市第二中學(xué)2020屆高三下學(xué)期臨考沖刺數(shù)學(xué)(文)試題【答案】C【解析】由題意可得,函數(shù)SKIPIF1<0,即函數(shù)SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖所示:由圖象可得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;因?yàn)楹瘮?shù)SKIPIF1<0為定義在SKIPIF1<0上的增函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.由題意知SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故選:C6.如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,那么SKIPIF1<0的最大值為()A.16 B.18 C.25 D.SKIPIF1<0【答案】B【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,于是SKIPIF1<0,則SKIPIF1<0無(wú)最大值.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象開口向下,要使SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,需SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0則SKIPIF1<0而SKIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0時(shí),SKIPIF1<0無(wú)最大值.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象開口向上,要使SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取“SKIPIF1<0”,此時(shí)滿足SKIPIF1<0,故SKIPIF1<0的最大值為18.選B.7.已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令t=SKIPIF1<0可得SKIPIF1<0,對(duì)稱軸為SKIPIF1<0,故最大值為SKIPIF1<0,即f(x)得最大值為SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),令u=sinx∈[0,SKIPIF1<0],則SKIPIF1<0,當(dāng)a=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 68083號(hào)工程:2024年鍋爐安裝作業(yè)協(xié)議版B版
- 2024年長(zhǎng)期雇傭工人合同
- 綜合2024年度林地生態(tài)旅游合作協(xié)議
- 2024智能家居系統(tǒng)集成服務(wù)協(xié)議
- 2024版鋼管采購(gòu)合同
- 2024年餐飲廚師合同范本
- 2025年度企業(yè)研發(fā)項(xiàng)目原材料采購(gòu)與合同執(zhí)行監(jiān)督協(xié)議3篇
- 2024房貸償還細(xì)則協(xié)議一
- 2024老舊堡坎重建及維護(hù)服務(wù)協(xié)議
- 2025年度林業(yè)信息化建設(shè)承包合同2篇
- 初中新人教版八年級(jí)下冊(cè)英語(yǔ)單詞表(按單元排序)附音標(biāo)及漢語(yǔ)意思excel版可編輯修改
- 河南省駐馬店市重點(diǎn)中學(xué)2023-2024學(xué)年九年級(jí)上學(xué)期12月月考語(yǔ)文試題(無(wú)答案)
- 咨詢服務(wù)協(xié)議書范本(完整版)
- 加快建設(shè)制造強(qiáng)國(guó) 夯實(shí)實(shí)體經(jīng)濟(jì)基礎(chǔ)課件
- 影像檢查診斷報(bào)告
- 蘭亭集序教學(xué)設(shè)計(jì)一等獎(jiǎng)(三篇)
- FMCW無(wú)線電高度表天線被部分遮擋下的影響分析及驗(yàn)證方法
- 高考專題復(fù)習(xí):《史記 孫子吳起列傳》分析
- 全國(guó)各省市縣統(tǒng)計(jì)表-
- 醋酸加尼瑞克注射液
- 蘇科版八年級(jí)物理上冊(cè)《運(yùn)動(dòng)的相對(duì)性》教案及教學(xué)反思
評(píng)論
0/150
提交評(píng)論