江蘇省江陰市澄東片2023年十校聯(lián)考最后數學試題含解析_第1頁
江蘇省江陰市澄東片2023年十校聯(lián)考最后數學試題含解析_第2頁
江蘇省江陰市澄東片2023年十校聯(lián)考最后數學試題含解析_第3頁
江蘇省江陰市澄東片2023年十校聯(lián)考最后數學試題含解析_第4頁
江蘇省江陰市澄東片2023年十校聯(lián)考最后數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.2.在學校演講比賽中,10名選手的成績折線統(tǒng)計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.53.下列調查中,最適合采用全面調查(普查)的是()A.對我市中學生每周課外閱讀時間情況的調查B.對我市市民知曉“禮讓行人”交通新規(guī)情況的調查C.對我市中學生觀看電影《厲害了,我的國》情況的調查D.對我國首艘國產航母002型各零部件質量情況的調查4.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個正根是()A.的長 B.的長 C.的長 D.的長5.將直線y=﹣x+a的圖象向右平移2個單位后經過點A(3,3),則a的值為()A.4B.﹣4C.2D.﹣26.計算的結果是()A.1 B.﹣1 C.1﹣x D.7.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°8.如圖,函數y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉180°得c2,交x軸于點A2;將c2繞點A2旋轉180°得c3,交x軸于點A3…如此進行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.49.用教材中的計算器依次按鍵如下,顯示的結果在數軸上對應點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B10.如圖,△ABC中,AB=AC,BC=12cm,點D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點E、F分別落在邊AB、BC上,則△EBF的周長是()cm.A.7 B.11 C.13 D.16二、填空題(共7小題,每小題3分,滿分21分)11.有一組數據:3,a,4,6,7,它們的平均數是5,則a=_____,這組數據的方差是_____.12.如圖,在中,,點D、E分別在邊、上,且,如果,,那么________.13.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.14.如圖(1),將一個正六邊形各邊延長,構成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.15.在平面直角坐標系中,已知線段AB的兩個端點的坐標分別是A(4,-1)、B(1,1),將線段AB平移后得到線段A′B′,若點A′的坐標為(-2,2),則點B′的坐標為________.16.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數量關系是________.17.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點F,若AD=1,BD=2,BC=4,則EF=________.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數y=kx+b與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)19.(5分)某紡織廠生產的產品,原來每件出廠價為80元,成本為60元.由于在生產過程中平均每生產一件產品有0.5的污水排出,現(xiàn)在為了保護環(huán)境,需對污水凈化處理后再排出.已知每處理1污水的費用為2元,且每月排污設備損耗為8000元.設現(xiàn)在該廠每月生產產品x件,每月純利潤y元:(1)求出y與x的函數關系式.(純利潤=總收入-總支出)(2)當y=106000時,求該廠在這個月中生產產品的件數.20.(8分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數,隨機抽取了部分征文進行了調查,根據調查結果繪制成如下兩幅不完整的統(tǒng)計圖.(1)將上面的條形統(tǒng)計圖補充完整;(2)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學生有多少名?21.(10分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數解析式;求點C的坐標.22.(10分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.23.(12分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.24.(14分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于A(﹣2,1),B(1,n)兩點.求反比例函數和一次函數的解析式;根據圖象寫出一次函數的值大于反比例函數的值的x的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.2、C【解析】試題分析:根據折線統(tǒng)計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.3、D【解析】

由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.由此,對各選項進行辨析即可.【詳解】A、對我市中學生每周課外閱讀時間情況的調查,人數眾多,意義不大,應采用抽樣調查,故此選項錯誤;B、對我市市民知曉“禮讓行人”交通新規(guī)情況的調查,人數眾多,意義不大,應采用抽樣調查,故此選項錯誤;C、對我市中學生觀看電影《厲害了,我的國》情況的調查,人數眾多,意義不大,應采用抽樣調查,故此選項錯誤;D、對我國首艘國產航母002型各零部件質量情況的調查,意義重大,應采用普查,故此選項正確;故選D.【點睛】本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.4、B【解析】【分析】可以利用求根公式求出方程的根,根據勾股定理求出AB的長,進而求得AD的長,即可發(fā)現(xiàn)結論.【解答】用求根公式求得:∵∴∴AD的長就是方程的正根.故選B.【點評】考查解一元二次方程已經勾股定理等,熟練掌握公式法解一元二次方程是解題的關鍵.5、A【解析】

直接根據“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點睛】本題考查了一次函數圖象的平移,一次函數圖象的平移規(guī)律是:①y=kx+b向左平移m個單位,是y=k(x+m)+b,向右平移m個單位是y=k(x-m)+b,即左右平移時,自變量x左加右減;②y=kx+b向上平移n個單位,是y=kx+b+n,向下平移n個單位是y=kx+b-n,即上下平移時,b的值上加下減.6、B【解析】

根據同分母分式的加減運算法則計算可得.【詳解】解:原式====-1,故選B.【點睛】本題主要考查分式的加減法,解題的關鍵是熟練掌握同分母分式的加減運算法則.7、C【解析】

根據平行線的性質,可得的度數,再根據以及平行線的性質,即可得出的度數.【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.8、C【解析】

求出與x軸的交點坐標,觀察圖形可知第奇數號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據向右平移橫坐標加表示出拋物線的解析式,然后把點P的坐標代入計算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點睛】本題考查的知識點是二次函數圖象與幾何變換,解題關鍵是根據題意得到p點所在函數表達式.9、A【解析】試題分析:在計算器上依次按鍵轉化為算式為﹣=-1.414…;計算可得結果介于﹣2與﹣1之間.故選A.考點:1、計算器—數的開方;2、實數與數軸10、C【解析】

直接利用平移的性質得出EF=DC=4cm,進而得出BE=EF=4cm,進而求出答案.【詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長為:4+4+5=13(cm).故選C.【點睛】此題主要考查了平移的性質,根據題意得出BE的長是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、51.【解析】∵一組數據:3,a,4,6,7,它們的平均數是5,∴,解得,,∴=1.故答案為5,1.12、【解析】

根據,,得出,利用相似三角形的性質解答即可.【詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:【點睛】本題考查了相似三角形的判定與性質.關鍵是要懂得找相似三角形,利用相似三角形的性質求解.13、【解析】

因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.14、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.15、(-5,4)【解析】試題解析:由于圖形平移過程中,對應點的平移規(guī)律相同,

由點A到點A'可知,點的橫坐標減6,縱坐標加3,

故點B'的坐標為即

故答案為:16、a+b=1.【解析】試題分析:根據作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數,故a+b=1.考點:1角平分線;2平面直角坐標系.17、【解析】

由DE∥BC可得出△ADE∽△ABC,根據相似三角形的性質和平行線的性質解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點睛】此題考查相似三角形的判定和性質,關鍵是由DE∥BC可得出△ADE∽△ABC.三、解答題(共7小題,滿分69分)18、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數圖象上點的坐標特征即可求出a值,從而得出反比例函數解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數法即可求出直線AB的解析式;

(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據三角形的面積公式結合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;

(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據反比例函數解析式以及平移的性質找出點E、F、M、N的坐標,根據EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據平移的性質即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數y=的圖象上,∴a=4×3=12,∴反比例函數解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數的解析式為y=2x﹣1.(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當△ABC的面積是8時,點C的坐標為(,0)或(,0).(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點睛】運用了反比例函數圖象上點的坐標特征、待定系數法求函數解析式、三角形的面積以及平行四邊形的面積,解題的關鍵是:(1)利用待定系數法求出函數解析式;(2)找出關于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數形結合的重要性.19、(1)y=19x-1(x>0且x是整數)(2)6000件【解析】

(1)本題的等量關系是:純利潤=產品的出廠單價×產品的數量-產品的成本價×產品的數量-生產過程中的污水處理費-排污設備的損耗,可根據此等量關系來列出總利潤與產品數量之間的函數關系式;(2)根據(1)中得出的式子,將y的值代入其中,求出x即可.【詳解】(1)依題意得:y=80x-60x-0.5x?2-1,化簡得:y=19x-1,∴所求的函數關系式為y=19x-1.(x>0且x是整數)(2)當y=106000時,代入得:106000=19x-1,解得x=6000,∴這個月該廠生產產品6000件.【點睛】本題是利用一次函數的有關知識解答實際應用題,可根據題意找出等量關系,列出函數式進行求解.20、(1)條形統(tǒng)計圖如圖所示,見解析;(2)選擇“愛國”主題所對應的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學生有360名.【解析】

(1)根據誠信的人數和所占的百分比求出抽取的總人數,用總人數乘以友善所占的百分比,即可補全統(tǒng)計圖;(2)用360°乘以愛國所占的百分比,即可求出圓心角的度數;(3)用該校七年級的總人數乘以“友善”所占的百分比,即可得出答案.【詳解】解:(1)本次調查共抽取的學生有(名)選擇“友善”的人數有(名)∴條形統(tǒng)計圖如圖所示:(2)∵選擇“愛國”主題所對應的百分比為,∴選擇“愛國”主題所對應的圓心角是;(3)該校七年級共有1200名學生,估計選擇以“友善”為主題的七年級學生有名.故答案為:(1)條形統(tǒng)計圖如圖所示,見解析;(2)選擇“愛國”主題所對應的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學生有360名.【點睛】本題考查讀頻數分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.21、(1)反比例函數解析式為y=;(2)C點坐標為(2,1)【解析】

(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).22、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】

(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論