




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本文格式為Word版,下載可任意編輯——尋40年記憶看四川變化尋常變化
不等式是高中數(shù)學(xué)及相關(guān)學(xué)科的重要工具,是高考必考內(nèi)容,而不等式中的根本不等式又是高考的重點(diǎn)與熱點(diǎn),根本不等式的應(yīng)用是測(cè)驗(yàn)的重點(diǎn),包括利用根本不等式求解函數(shù)的最大(?。┲祮?wèn)題和簡(jiǎn)樸的證明問(wèn)題.
一、典例探究
(一)利用根本不等式證明不等式
已知a>0,b>0,a+b=1,求證:?1+?1a1+1b≥9.
證明解法一:由于a>0,?b>?0,a+b=1,
所以1+1a=1+a+ba=?2+?ba.
同理1+1b=2+ab.
(利用1與a+b的關(guān)系,將1代換為a+b并化簡(jiǎn))
所以1+1a1+1b=2+ba2+ab=5+2ba+ab≥5+4=9.
(結(jié)合式子特征,用根本不等式放縮)
所以1+1a1+1b≥9.(小結(jié)過(guò)程,呈現(xiàn)結(jié)論)
解法二:由于a,b為正數(shù),a+b=1,
所以1+1a1+1b=1+1a+1b+1ab=1+a+bab+?1ab=?1+2ab,
(對(duì)不等號(hào)左側(cè)開(kāi)展化簡(jiǎn),并將a+b代換為1)
又ab≤a+b2?2=14,于是1ab≥4,2ab≥8,(利用根本不等式放縮)
因此1+1a1+1b≥1+8=9.(小結(jié)過(guò)程,呈現(xiàn)結(jié)論)
點(diǎn)評(píng)利用根本不等式證明不等式是綜合法證明不等式的一種處境,要從整體上把握運(yùn)用根本不等式,對(duì)不得志使用不等式條件的可通過(guò)“變形”來(lái)轉(zhuǎn)換,常見(jiàn)的變形技巧有:拆項(xiàng)、并項(xiàng),也可乘上一個(gè)數(shù)或加上一個(gè)數(shù),“1”的代換法等.
(二)利用根本不等式求最值
已知x>1,那么函數(shù)y=x+1x-1的最小值為
解由于x>1,所以x-1>0,所以
y=x+1x-1=x-1+1x-1+1
≥2(x-1)1x-1+?1=?3,
當(dāng)且僅當(dāng)x-1=1x-1,即x=2時(shí)取“=”,所以函數(shù)的最小值為3,即此題答案為3.
變題1已知t>0,那么函數(shù)y=t?2-4t+1t的最小值為.
解∵t>0,∴y=t?2-4t+1t=t+1t-4
≥?2t1t-?4=-2.
當(dāng)且僅當(dāng)t=1t,即t=1時(shí),取得等號(hào),故此題答案為-2.
斟酌若題中“t>0”改為“t≥2”呢?
點(diǎn)評(píng)運(yùn)用根本不等式求函數(shù)的最小值,需具備條件:各數(shù)(式)均為正,積為定值,等號(hào)能取得.
變題2若對(duì)任意x>0,xx?2+3x+1≤a恒成立,那么a的取值范圍是.
解∵x>0,∴x+1x≥2(當(dāng)且僅當(dāng)x=1時(shí)取等號(hào)),
∴xx?2+3x+1=1x+1x+3≤12+3=15,即xx?2+3x+1的最大值為15,故a≥15,故此題答案為15,+∞.
變題3(1)已知x>0,y>0,且
x+2y=1,求2x+1y的最小值.
(2)已知x>0,y>0,且?2x+?1y=1,
求x+2y的最小值.
解(1)∵x>0,y>0,且x+2y=1,
∴2x+1y=(x+2y)2x+1y
=4+4yx+xy≥4+24yxxy=8,
當(dāng)且僅當(dāng)4yx=xy,即?4y?2=?x?2,x=2y時(shí)取等號(hào),又x+?2y=?1,此時(shí)x=12,y=14,
∴2x+1y???min??=8
(2)∵x>0,y>0,且2x+1y=1,
∴x+2y=(x+2y)2x+1y
=4+4yx+?xy≥4+?24yxxy=8,
當(dāng)且僅當(dāng)4yx=xy,即?4y?2=?x?2,x=2y時(shí)取等號(hào),又2x+?1y=?1,此時(shí)x=4,y=2,
∴(x+2y)???min??=8
點(diǎn)評(píng)利用根本不等式求最值需留神的問(wèn)題
(1)各數(shù)(或式)均為正;
(2)和或積為定值;
(3)等號(hào)能否成立,即“一正、二定、三相等”這三個(gè)條件缺一不成.
若無(wú)明顯“定值”,那么用配湊的方法,使和為定值或積為定值.
當(dāng)屢屢使用根本不等式時(shí),確定要留神每次是否能保證等號(hào)成立,并且要留神取等號(hào)的條件的一致性,否那么就會(huì)出錯(cuò),因此在利用根本不等式處理問(wèn)題時(shí),列出等號(hào)成立的條件不僅是解題的必要步驟,而且也是檢驗(yàn)轉(zhuǎn)換是否有誤的一種方法.
牛刀小試
1.已知a>0,b>0,a+b=1,求證:1a+1b≥4.
2.當(dāng)x0,y>0,且x+y=1,求3x+4y的最小值.
4.已知直角△ABC中,周長(zhǎng)為L(zhǎng)(L為正的常數(shù)),求△ABC面積S的最大值.
1.∵a>0,b>0,a+?b=?1,
∴1a+1b=a+ba+a+bb=?2+?ba+ab
≥2+?2baab=?4.
∴1a+1b≥4.(當(dāng)且僅當(dāng)?a=?b=12時(shí)等號(hào)成立).
2.∵x0,
∴f(x)=x+4x-3=(x-3)+4x-3+3
=?
-43-x+(?3-?x)+?3
≤
-243-x(3-x)+?3=?-1,
當(dāng)且僅當(dāng)43-x=3-x,即?x=?1時(shí)等號(hào)成立,
∴f(x)的最大值為-1.
3.∵x>0,y>0,且x+y=1,∴3x+4y
=3x+4y(x+y)=7+3yx+4xy
≥7+?23yx4xy=?7+43,
當(dāng)且僅當(dāng)3yx=4xy,x+y=1時(shí)等號(hào)成立,即?x=?23-3,y=4-23,
∴3x+4y的最小值為7+43.
4.設(shè)直角△ABC的兩條直角邊分別為a、b,斜邊為c,
由題意知:a+b+c=L,a?2+
b?2=c?2,∴a+b+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年商務(wù)英語(yǔ)準(zhǔn)備計(jì)劃制定試題及答案
- 中國(guó)輕軌交通行業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)與投資機(jī)會(huì)研究報(bào)告2025-2028版
- 中國(guó)苧麻錦色織布行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告2025-2028版
- 2025年電動(dòng)汽車(chē)保險(xiǎn)政策考試題及答案
- 2024年江蘇蘇州凌曄進(jìn)出口有限公司招聘真題
- 力學(xué)實(shí)驗(yàn)的關(guān)鍵知識(shí)點(diǎn)題試題及答案
- 中國(guó)獵槍瞄準(zhǔn)鏡行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告2025-2028版
- 中國(guó)燃?xì)庠钚袠I(yè)發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告2025-2028版
- 2025年土木工程師考試全面測(cè)評(píng)試題及答案
- 中國(guó)淋浴器市場(chǎng)深度調(diào)查研究報(bào)告2025-2028版
- 《高速公路改擴(kuò)建工程預(yù)算定額》
- 職場(chǎng)心態(tài)-培訓(xùn)課件
- 品管圈PDCA案例-中醫(yī)醫(yī)院減少住院患者艾灸燙傷率醫(yī)院改善成果匯報(bào)
- 國(guó)有企業(yè)戰(zhàn)略規(guī)劃審計(jì)實(shí)施方案
- 腦出血疑難病例討論護(hù)理
- 公園綠地四害監(jiān)測(cè)及消殺預(yù)案
- 電梯生產(chǎn)質(zhì)量安全總監(jiān)題庫(kù)含答案
- 統(tǒng)編版 高中語(yǔ)文 選擇性必修下 第二單元《邊城》
- 白內(nèi)障患者護(hù)理教學(xué)查房
- 民用無(wú)人機(jī)操控員執(zhí)照(CAAC)考試復(fù)習(xí)重點(diǎn)題庫(kù)500題(含答案)
- 機(jī)械租賃保障措施
評(píng)論
0/150
提交評(píng)論