陜西省岐山縣聯(lián)考2023年中考猜題數(shù)學試卷含解析_第1頁
陜西省岐山縣聯(lián)考2023年中考猜題數(shù)學試卷含解析_第2頁
陜西省岐山縣聯(lián)考2023年中考猜題數(shù)學試卷含解析_第3頁
陜西省岐山縣聯(lián)考2023年中考猜題數(shù)學試卷含解析_第4頁
陜西省岐山縣聯(lián)考2023年中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點2.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數(shù)是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個3.某校九年級共有1、2、3、4四個班,現(xiàn)從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.34.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數(shù)點后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里5.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.6.在一張考卷上,小華寫下如下結論,記正確的個數(shù)是m,錯誤的個數(shù)是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.7.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內(nèi)氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.8.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.39.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.10.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式=________,=__________.12.關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實根,則實數(shù)k的取值范圍是_____.13.如圖,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分線分別交AB、BC于D、E,則△ACD的周長為cm.14.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標是.15.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.16.在反比例函數(shù)圖象的每一支上,y隨x的增大而______用“增大”或“減小”填空.三、解答題(共8題,共72分)17.(8分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.18.(8分)某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:m=;請補全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為;已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.19.(8分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數(shù)根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.20.(8分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設計出使該商場獲得最大利潤的進貨方案.21.(8分)新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套房面積均為120米2.若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:降價8%,另外每套房贈送a元裝修基金;降價10%,沒有其他贈送.請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)表達式;老王要購買第十六層的一套房,若他一次性付清所有房款,請幫他計算哪種優(yōu)惠方案更加合算.22.(10分)如圖,直線y=12x與雙曲線y=kx(k>0,x>0)交于點A,將直線y=12(1)設點B的橫坐標分別為b,試用只含有字母b的代數(shù)式表示k;(2)若OA=3BC,求k的值.23.(12分)某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;經(jīng)調(diào)查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?24.如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關系是,位置關系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).2、C【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質(zhì)、三角形的面積求法、相似三角形的性質(zhì)和判定、平行線等分線段定理、函數(shù)圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數(shù)形結合的數(shù)學思想方法.3、B【解析】畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好抽到1班和2班的結果數(shù),然后根據(jù)概率公式求解.解:畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好抽到1班和2班的結果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.4、B【解析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【點睛】本題考查了三角形內(nèi)角和定理與等腰直角三角形的性質(zhì),解題的關鍵是熟練的掌握三角形內(nèi)角和定理與等腰直角三角形的性質(zhì).5、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關系.6、D【解析】

首先判斷出四個結論的錯誤個數(shù)和正確個數(shù),進而可得m、n的值,再計算出即可.【詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;

,正確;

,錯誤;

若,則它們互余,錯誤;

則,,

故選D.【點睛】此題主要考查了二次根式的乘除、對頂角、科學記數(shù)法、余角和負整數(shù)指數(shù)冪,關鍵是正確確定m、n的值.7、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.8、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.9、C【解析】

如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.10、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式12、k>【解析】

由方程根的情況,根據(jù)根的判別式可得到關于k的不等式,則可求得k的取值范圍.【詳解】∵關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案為k>.【點睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.13、8【解析】試題分析:根據(jù)線段垂直平分線的性質(zhì)得,BD=CD,則AB=AD+CD,所以,△ACD的周長=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分線,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周長=AD+CD+AC=AB+AC=8cm;故答案為8考點:線段垂直平分線的性質(zhì)點評:本題主要考查了線段垂直平分線的性質(zhì)和三角形的周長,掌握線段的垂直平分線上的點到線段兩端點的距離相等14、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設A1的坐標為(x,y),設∠AOX=α,∠A1OD=β,A1坐標(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標為(﹣b,a).【點評】重點理解三角函數(shù)的定義和求解方法,主要應用公式sinα=cosβ,cosα=sinβ.15、11π﹣.【解析】

陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【點睛】考查不規(guī)則圖形的面積的計算,掌握扇形的面積公式是解題的關鍵.16、減小【解析】

根據(jù)反比例函數(shù)的性質(zhì),依據(jù)比例系數(shù)k的符號即可確定.【詳解】∵k=2>0,∴y隨x的增大而減?。蚀鸢甘牵簻p?。军c睛】本題考查了反比例函數(shù)的性質(zhì),反比例函數(shù)y=(k≠0)的圖象是雙曲線,當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減??;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.三、解答題(共8題,共72分)17、(1);(2).【解析】

(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據(jù)表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質(zhì).注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.18、(1)150,(2)36°,(3)1.【解析】

(1)根據(jù)圖中信息列式計算即可;(2)求得“足球“的人數(shù)=150×20%=30人,補全上面的條形統(tǒng)計圖即可;(3)360°×乒乓球”所占的百分比即可得到結論;(4)根據(jù)題意計算即可.【詳解】(1)m=21÷14%=150,(2)“足球“的人數(shù)=150×20%=30人,補全上面的條形統(tǒng)計圖如圖所示;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為360°×=36°;(4)1200×20%=1人,答:估計該校約有1名學生最喜愛足球活動.故答案為150,36°,1.【點睛】本題考查了條形統(tǒng)計圖,觀察條形統(tǒng)計圖、扇形統(tǒng)計圖獲得有效信息是解題關鍵.19、方程的根【解析】

(1)根據(jù)方程的系數(shù)結合根的判別式,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【詳解】(1)∵關于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數(shù)根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當k=0時,方程的根為0和﹣1.【點睛】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數(shù)根”;(1)取k=0,再利用分解因式法解方程.20、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應購進甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當50<a<60時,a﹣60<0,y隨x的增大而減小,∴當x=100時,y有最大利潤,即商場應購進甲商品100件,乙商品100件,獲利最大,②當a=60時,a﹣60=0,y=28000,即商場應購進甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當60<a<70時,a﹣60>0,y隨x的增大而增大,∴當x=120時,y有最大利潤,即商場應購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利潤的關系式:單件利潤=售價-進價,總利潤=單個利潤×數(shù)量;認真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減?。?1、(1);(2)當每套房贈送的裝修基金多于10560元時,選擇方案一合算;當每套房贈送的裝修基金等于10560元時,兩種方案一樣;當每套房贈送的裝修基金少于10560元時,選擇方案二合算.【解析】

解:(1)當1≤x≤8時,每平方米的售價應為:y=4000﹣(8﹣x)×30="30x+3760"(元/平方米)當9≤x≤23時,每平方米的售價應為:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴(2)第十六層樓房的每平方米的價格為:50×16+3600=4400(元/平方米),按照方案一所交房款為:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款為:W2=4400×120×(1﹣10%)=475200(元),當W1>W(wǎng)2時,即485760﹣a>475200,解得:0<a<10560,當W1<W2時,即485760﹣a<475200,解得:a>10560,∴當0<a<10560時,方案二合算;當a>10560時,方案一合算.【點睛】本題考查的是用一次函數(shù)解決實際問題,讀懂題目信息,找出數(shù)量關系表示出各樓層的單價以及是交房款的關系式是解題的關鍵.22、(1)k=12b2+4b;(2)9【解析】試題分析:(1)分別求出點B的坐標,即可解答.(2)先根據(jù)一次函數(shù)平移的性質(zhì)求出平移后函數(shù)的解析式,再分別過點A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點F,再設A(3x,32x),由于OA=3BC,故可得出B(x,1試題解析:(1)∵將直線y=12∴平移后直線的解析式為y=12∵點B在直線y=12∴B(b,12∵點B在雙曲線y=kx∴B(b,kb令12b+4=得k=(2)分別過點A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點F,設A(3x,32∵OA=3BC,BC∥OA,CF∥x軸,∴CF=13∵點A、B在雙曲線y=kx∴3b?32b=1∴k=3×1×32×1=9考點:反比例函數(shù)綜合題.23、(1)兩次下降的百分率為10%;(2)要使每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則商品應降價2.1元.【解析】

(1)設每次降價的百分率為x,(1﹣x)2為兩次降價后的百分率,40元降至32.4元就是方程的等量條件,列出方程求解即可;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由銷售問題的數(shù)量關系建立方程求出其解即可【詳解】解:(1)設每次降價的百分率為x.40×(1﹣x)2=32.4x=10%或190%(190%不符合題意,舍去)答:該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由題意,得解得:=1.1,=2.1,∵有利于減少庫存,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論