2022-2023學(xué)年遼寧省葫蘆島市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第1頁
2022-2023學(xué)年遼寧省葫蘆島市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第2頁
2022-2023學(xué)年遼寧省葫蘆島市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第3頁
2022-2023學(xué)年遼寧省葫蘆島市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第4頁
2022-2023學(xué)年遼寧省葫蘆島市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年遼寧省葫蘆島市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(22題)1.己知向量a=(3,-2),b=(-1,1),則3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

2.函數(shù)y=1/2x2-lnx的單調(diào)遞減區(qū)間為().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

3.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一個不等于0D.a,b,c中至少有一個等于0

4.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

5.A.0

B.C.1

D.-1

6.同時擲兩枚質(zhì)地均勻的硬幣,則至少有一枚出現(xiàn)正面的概率是()A.lB.3/4C.1/2D.1/4

7.設(shè)a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

8.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進(jìn)行測量,下列說法正確的是()A.總體是240B.個體是每-個學(xué)生C.樣本是40名學(xué)生D.樣本容量是40

9.在△ABC,A=60°,B=75°,a=10,則c=()A.

B.

C.

D.

10.函數(shù)y=Asin(wx+α)的部分圖象如圖所示,則()A.y=2sin(2x-π/6)

B.y=2sin(2x-π/3)

C.y=2sin(x+π/6)

D.y=2sin(x+π/3)

11.A.-1B.-4C.4D.2

12.過點A(-1,0),B(0,-1)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

13.下列命題正確的是()A.若|a|=|b|則a=bB.若|a|=|b|,則a>bC.若|a|=|b丨則a//bD.若|a|=1則a=1

14.下列函數(shù)為偶函數(shù)的是A.B.C.

15.若函數(shù)y=log2(x+a)的反函數(shù)的圖像經(jīng)過點P(-1,0),則a的值為()A.-2

B.2

C.

D.

16.已知{an}是等差數(shù)列,a1+a7=-2,a3=2,則{an}的公差d=()A.-1B.-2C.-3D.-4

17.函數(shù)f(x)的定義域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

18.袋中裝有4個大小形狀相同的球,其中黑球2個,白球2個,從袋中隨機(jī)抽取2個球,至少有一個白球的概率為()A.

B.

C.

D.

19.若a,b兩直線異面垂直,b,c兩直線也異面垂直,則a,c的位置關(guān)系()A.平行B.相交、異面C.平行、異面D.相交、平行、異面

20.若實數(shù)a,b滿足a+b=2,則3a+3b的最小值是()A.18

B.6

C.

D.

21.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4

22.設(shè)集合={1,2,3,4,5,6,},M={1,3,5},則CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U

二、填空題(10題)23.函數(shù)f(x)=-X3+mx2+1(m≠0)在(0,2)內(nèi)的極大值為最大值,則m的取值范圍是________________.

24.

25.當(dāng)0<x<1時,x(1-x)取最大值時的值為________.

26.過點(1,-1),且與直線3x-2y+1=0垂直的直線方程為

。

27.不等式的解集為_____.

28.若x<2,則_____.

29.已知_____.

30.在銳角三角形ABC中,BC=1,B=2A,則=_____.

31.

32.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為

三、計算題(10題)33.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

34.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

35.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

36.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

37.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.

38.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

39.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

40.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

41.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

42.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

四、簡答題(10題)43.己知邊長為a的正方形ABCD,PA丄底面ABCD,PA=a,求證,PC丄BD

44.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC

45.已知集合求x,y的值

46.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程

47.已知A,B分別是橢圓的左右兩個焦點,o為坐標(biāo)的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標(biāo)準(zhǔn)方程

48.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)

49.解關(guān)于x的不等式

50.求過點P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。

51.據(jù)調(diào)查,某類產(chǎn)品一個月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個月內(nèi)被投訴不超過1次的概率

52.設(shè)等差數(shù)列的前n項數(shù)和為Sn,已知的通項公式及它的前n項和Tn.

五、解答題(10題)53.

54.已知函數(shù)f(x)=2sin(x-π/3).(1)寫出函數(shù)f(x)的周期;(2)將函數(shù)f(x)圖象上所有的點向左平移π/3個單位,得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達(dá)式,并判斷函數(shù)g(x)的奇偶性.

55.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點.(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1

56.等差數(shù)列{an}中,a7=4,a19=2a9.(1)求{an}的通項公式;(2)設(shè)bn=1/nan求數(shù)列{bn}的前n項和Sn.

57.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

58.證明上是增函數(shù)

59.

60.

61.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設(shè)bn=an+n,求數(shù)列{bn}前5項和S5.

62.

六、單選題(0題)63.某人從一魚池中捕得120條魚,做了記號之后,再放回池中,經(jīng)過一定的時間后,再從該魚池中捕得100條魚,結(jié)果發(fā)現(xiàn)有記號的魚為10條(假定魚池中魚的數(shù)量既不減少,也不增加),則魚池中大約有魚()A.120條B.1000條C.130條D.1200條

參考答案

1.D

2.B函數(shù)的單調(diào)性.∵y=1/2x2-Inx,∴y=x-1/x,由:y'<0,解得-1≤x≤1,又x>0,∴0<x≤1.

3.D

4.B

5.D

6.B獨立事件的概率.同時擲兩枚質(zhì)地均勻的硬幣,可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)共4種結(jié)果,至少有一枚出現(xiàn)正面的結(jié)果有3種,所求的概率是3/4

7.D

8.D確定總體.總體是240名學(xué)生的身高情況,個體是每一個學(xué)生的身高,樣本是40名學(xué)生的身髙,樣本容量是40.

9.C解三角形的正弦定理的運(yùn)

10.A三角函數(shù)圖像的性質(zhì).由題圖可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五點作圖法可知2×π/3+α=π/2,所以α=-π/6所以函數(shù)的解析式為y=2sin(2x-π/6)

11.C

12.C直線的兩點式方程.點代入驗證方程.

13.Ca、b長度相等但是方向不確定,故A不正確;向量無法比較大小,故B不正確;a兩個向量相同,故C正確;左邊是向量,右邊是數(shù)量,等式不成立,D不正確。

14.A

15.D

16.C等差數(shù)列的定義.a1+a7=a32d+a3+4d=2a3+2d,2a3+2d=-2,d=-3.

17.B由題可知,3-x2大于0,所以定義域為(-3,3)

18.D從中隨即取出2個球,每個球被取到的可能性相同,因此所有的取法為,所取出的的2個球至少有1個白球,所有的取法為,由古典概型公式可知P=5/6.

19.Da,c與b均為異面垂直,c與a有可能相交、平行和異面,

20.B不等式求最值.3a+3b≥2

21.A

22.A補(bǔ)集的運(yùn)算.CuM={2,4,6}.

23.(0,3).利用導(dǎo)數(shù)求函數(shù)的極值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因為x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).

24.{x|1<=x<=2}

25.1/2均值不等式求最值∵0<

26.

27.-1<X<4,

28.-1,

29.

30.2

31.π/4

32.

,由于CC1=1,AC1=,所以角AC1C的正弦值為。

33.

34.

35.

36.

37.

38.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

39.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4

40.

41.

42.

43.證明:連接ACPA⊥平面ABCD,PC是斜線,BD⊥ACPC⊥BD(三垂線定理)

44.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC

45.

46.

47.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為

48.

49.

50.x-7y+19=0或7x+y-17=0

51.設(shè)事件A表示“一個月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

52.(1)∵

∴又∵等差數(shù)列∴∴(2)

53.

54.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由題意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),為奇函數(shù).

55.(1)如圖,連接BD,在正方體AC1中,對角線BD//

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論