2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

4.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論

5.

6.A.A.

B.

C.

D.

7.

8.

9.

10.函數(shù)在(-3,3)內(nèi)展開成x的冪級(jí)數(shù)是()。

A.

B.

C.

D.

11.()。A.0

B.1

C.2

D.+∞

12.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

13.

14.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

15.若,則下列命題中正確的有()。A.

B.

C.

D.

16.A.A.必條件收斂B.必絕對(duì)收斂C.必發(fā)散D.收斂但可能為條件收斂,也可能為絕對(duì)收斂

17.

18.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.

B.

C.

D.

19.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

20.A.A.e2/3

B.e

C.e3/2

D.e6

二、填空題(20題)21.f(x)=sinx,則f"(x)=_________。

22.

23.

則b__________.

24.y''-2y'-3y=0的通解是______.25.函數(shù)的間斷點(diǎn)為______.

26.過(guò)坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.

27.方程cosxsinydx+sinxcosydy=0的通解為___________.

28.

29.

30.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。

31.

32.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.

33.

34.

35.36.

37.

38.若∫x0f(t)dt=2e3x-2,則f(x)=________。

39.40.三、計(jì)算題(20題)41.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

44.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則45.

46.47.48.求曲線在點(diǎn)(1,3)處的切線方程.

49.

50.求微分方程y"-4y'+4y=e-2x的通解.

51.求微分方程的通解.52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

53.

54.55.證明:56.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.58.

59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.60.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)61.

62.求在區(qū)間[0,π]上由曲線y=sinx與y=0所圍成的圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積Vx。63.64.證明:在區(qū)間(0,1)內(nèi)有唯一實(shí)根.

65.

66.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

67.求微分方程xy'-y=x2的通解.68.

69.

70.五、高等數(shù)學(xué)(0題)71.若函數(shù)f(x)的導(dǎo)函數(shù)為sinx,則f(x)的一個(gè)原函數(shù)是__________。

六、解答題(0題)72.

參考答案

1.B

2.A解析:

3.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

4.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

5.A

6.A

7.A

8.C

9.C

10.B

11.B

12.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

13.A

14.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

15.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

16.D

17.C

18.D

19.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

20.D

21.-sinx

22.

解析:

23.所以b=2。所以b=2。24.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.25.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

僅當(dāng),即x=±1時(shí),函數(shù)沒(méi)有定義,因此x=±1為函數(shù)的間斷點(diǎn)。

26.3x-7y+5z=0本題考查了平面方程的知識(shí)點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.

27.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).

由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

28.

29.

30.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。31.(-∞,+∞).

本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).

若ρ=+∞,則收斂半徑R=0,級(jí)數(shù)僅在點(diǎn)x=0收斂.

32.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識(shí)點(diǎn)。

33.

34.dx

35.36.3x2

37.[01)∪(1+∞)

38.6e3x

39.

40.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.

41.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.由等價(jià)無(wú)窮小量的定義可知45.由一階線性微分方程通解公式有

46.

47.48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.

52.

列表:

說(shuō)明

53.

54.

55.

56.

57.

58.

59.由二重積分物理意義知

60.

61.

62.

63.

64.本題考查的知識(shí)點(diǎn)為閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理;利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.

證明方程f(x)=0在區(qū)間(a,b)內(nèi)有唯一實(shí)根,往往分兩步考慮:(1)根的存在性:常利用連續(xù)函數(shù)在閉區(qū)間上的零點(diǎn)定理證明.(2)根的唯一性

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論