版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年河南省平頂山市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
A.
B.
C.
D.
2.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
3.
4.A.A.
B.B.
C.C.
D.D.
5.設(shè)y=x2-e2,則y=
A.2x-2e
B.2x-e2
C.2x-e
D.2x
6.
7.
8.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
9.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
10.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]
B.[-1,1]
C.[1,+∞)
D.(-∞,+∞)
11.
12.
13.
14.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
15.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
16.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
17.
18.
19.
20.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
二、填空題(20題)21.
22.
23.24.25.26.
27.
28.
29.
30.
31.32.33.
34.y=lnx,則dy=__________。
35.
36.當(dāng)x=1時(shí),f(x)=x3+3px+q取到極值(其中q為任意常數(shù)),則p=______.
37.過(guò)點(diǎn)M0(2,0,-1)且平行于的直線方程為_(kāi)_____.
38.
39.冪級(jí)數(shù)
的收斂半徑為_(kāi)_______。40.三、計(jì)算題(20題)41.
42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.43.求微分方程的通解.
44.求微分方程y"-4y'+4y=e-2x的通解.
45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則46.
47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
48.
49.
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.求曲線在點(diǎn)(1,3)處的切線方程.54.
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).56.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.57.58.證明:59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).四、解答題(10題)61.62.63.
64.
65.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。
66.(本題滿分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’67.用洛必達(dá)法則求極限:68.計(jì)算
69.
70.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.五、高等數(shù)學(xué)(0題)71.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件六、解答題(0題)72.(本題滿分8分)
參考答案
1.B
2.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
3.A
4.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).
5.D
6.C
7.C
8.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
9.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
10.B
11.A
12.B
13.C
14.D
15.D
16.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
17.C
18.D
19.D
20.C
21.
22.
23.
24.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
25.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
26.
27.|x|
28.-229.由不定積分的基本公式及運(yùn)算法則,有
30.
31.
本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
32.0
33.
34.(1/x)dx
35.2
36.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.
37.
38.-ln|x-1|+C39.所給冪級(jí)數(shù)為不缺項(xiàng)情形,可知ρ=1,因此收斂半徑R==1。40.2.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
能利用洛必達(dá)法則求解.
如果計(jì)算極限,應(yīng)該先判定其類型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):
若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.
若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.
檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.
41.
42.由二重積分物理意義知
43.
44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
45.由等價(jià)無(wú)窮小量的定義可知
46.
則
47.
48.
49.
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
51.52.函數(shù)的定義域?yàn)?/p>
注意
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.由一階線性微分方程通解公式有
55.
列表:
說(shuō)明
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.66.本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.
解法1將所給方程兩端關(guān)于x求導(dǎo),可得
解法2
y=y(tǒng)(x)由方程F(x,y)=0確定,求y通常有兩種方法:
-是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y的方程,從中解出y.
對(duì)于-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度商業(yè)綜合體場(chǎng)地租賃與商業(yè)運(yùn)營(yíng)合作協(xié)議3篇
- 四川省南充市閬中學(xué)市2025屆中考押題生物預(yù)測(cè)卷含解析
- 2025年度農(nóng)業(yè)設(shè)施場(chǎng)地隱秘操作監(jiān)管合同4篇
- 裝備保障課程設(shè)計(jì)
- 2025年度老舊小區(qū)拆除改造工程施工合同范本4篇
- 稻米成熟課程設(shè)計(jì)
- 2025年分期付款家電維修合同
- 2025年合資合同書(shū)規(guī)范示例
- 2025年企業(yè)保密競(jìng)業(yè)禁言協(xié)議
- 象棋教學(xué)基礎(chǔ)課程設(shè)計(jì)
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計(jì)規(guī)范》編制說(shuō)明
- PMC主管年終總結(jié)報(bào)告
- 售樓部保安管理培訓(xùn)
- 倉(cāng)儲(chǔ)培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級(jí)
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢(shì)與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測(cè)》真題卷及答案解析
- 橋梁監(jiān)測(cè)監(jiān)控實(shí)施方案
評(píng)論
0/150
提交評(píng)論