版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年福建省南平市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.I1=I2
B.I1>I2
C.I1<I2
D.無法比較
2.
3.
A.2B.1C.1/2D.0
4.
5.
6.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點且平行于x軸B.不過原點但平行于x軸C.過原點且垂直于x軸D.不過原點但垂直于x軸
7.擺動導(dǎo)桿機構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點到滑竿CD間的距離為l,則關(guān)于滑竿上銷釘A的運動參數(shù)計算有誤的是()。
A.運動方程為x=ltan∮=ltanωt
B.速度方程為
C.加速度方程
D.加速度方程
8.
9.
10.半圓板的半徑為r,重為w,如圖所示。已知板的重心C離圓心的距離為在A、B、D三點用三根鉛垂繩懸掛于天花板上,使板處于水平位置,則三根繩子的拉力為()。
A.F1=0.38w
B.F2=0.23w
C.F3=0.59w
D.以上計算均正確
11.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
12.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
13.()。A.過原點且平行于X軸B.不過原點但平行于X軸C.過原點且垂直于X軸D.不過原點但垂直于X軸
14.A.
B.
C.
D.
15.
16.下列級數(shù)中發(fā)散的是()
A.
B.
C.
D.
17.
18.
19.
20.
二、填空題(20題)21.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.
22.23.24.設(shè)y=3x,則y"=_________。
25.
26.
27.
28.
29.設(shè),則y'=______。
30.
31.
32.
33.34.
35.
36.
37.設(shè)y=f(x)在點x0處可導(dǎo),且在點x0處取得極小值,則曲線y=f(x)在點(x0,f(x0))處的切線方程為________。
38.
39.
40.
三、計算題(20題)41.42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.43.44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.45.46.將f(x)=e-2X展開為x的冪級數(shù).47.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.48.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
49.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
50.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
51.
52.
53.
54.證明:55.求曲線在點(1,3)處的切線方程.
56.求微分方程y"-4y'+4y=e-2x的通解.
57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.求微分方程的通解.59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.60.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.求微分方程的通解.
68.69.證明:70.五、高等數(shù)學(xué)(0題)71.設(shè)
則當(dāng)n→∞時,x,是__________變量。
六、解答題(0題)72.證明:ex>1+x(x>0).
參考答案
1.C因積分區(qū)域D是以點(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
2.D解析:
3.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).
4.A解析:
5.A
6.C將原點(0,0,0)代入直線方程成等式,可知直線過原點(或由直線方程x/m=y/n=z/p表示過原點的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且
(0,2,1)*(1,0,0)=0,
可知所給直線與x軸垂直,因此選C。
7.C
8.D
9.A
10.A
11.A本題考查的知識點為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
12.D由拉格朗日定理
13.C將原點(0,0,O)代入直線方程成等式,可知直線過原點(或由
14.B
15.B
16.D
17.D解析:
18.A
19.B
20.D解析:
21.
22.<0本題考查了反常積分的斂散性(比較判別法)的知識點。23.1本題考查的知識點為定積分的換元積分法.
24.3e3x
25.2
26.0
27.π/4
28.(03)(0,3)解析:29.本題考查的知識點為導(dǎo)數(shù)的運算。
30.yxy-1
31.2
32.2
33.34.(-1,1)。
本題考查的知識點為求冪級數(shù)的收斂區(qū)間。
所給級數(shù)為不缺項情形。
(-1,1)。注《綱》中指出,收斂區(qū)間為(-R,R),不包括端點。本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時過于緊張而導(dǎo)致的錯誤。
35.
36.
37.y=f(x0)y=f(x)在點x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。38.1.
本題考查的知識點為函數(shù)在一點處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
39.
40.
解析:
41.
42.
43.
44.
列表:
說明
45.
46.
47.
48.由等價無窮小量的定義可知
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
50.
51.
52.
53.
則
54.
55.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
56.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
57.函數(shù)的定義域為
注意
58.59.由二重積分物理意義知
60.由一階線性微分方程通解公式有
61.
62.
63.
64.
65.
66.67.所給方程為一階線性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級道德與法治上冊 第三單元 網(wǎng)絡(luò)世界 第七課 走進網(wǎng)絡(luò)空間《享受網(wǎng)絡(luò)生活》教學(xué)設(shè)計 教科版
- 2024年九年級歷史上冊 第五單元 步入近代 第14課《文藝復(fù)興運動》教案 新人教版
- 2024-2025學(xué)年九年級歷史月考498
- 《接觸網(wǎng)施工》課件模塊三 接觸網(wǎng)上部工程施工
- 2024版K線圖表解讀詳解教程
- 2024年《經(jīng)濟法》教學(xué)課件:助你應(yīng)對考試
- PCS 7 操作員站體系結(jié)構(gòu)(工程師培訓(xùn))
- 教學(xué)研究:三角形分類教案的發(fā)展趨勢(2024年)
- 北京大學(xué)2024年有機化學(xué)教案:實現(xiàn)教學(xué)個性化
- 科學(xué)實驗:《十萬個為什么》動手實踐探科學(xué)
- 傳統(tǒng)節(jié)日文化在幼兒園課程中的應(yīng)用研究 論文
- 瀝青改色路面修補施工方案
- 香菇種植示范基地項目可行性策劃實施方案
- 混凝土硫酸鹽侵蝕基本機理研究
- 《機械設(shè)計基礎(chǔ)A》機械電子 教學(xué)大綱
- 水工巖石分級及圍巖分類
- 基因擴增實驗室常用儀器使用課件
- 斜井敷設(shè)電纜措施
- 施工機械設(shè)備租賃實施方案
- 牙膏產(chǎn)品知識課件
- 液化氣站人員勞動合同范本
評論
0/150
提交評論