2022-2023學(xué)年江西省上饒市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第1頁
2022-2023學(xué)年江西省上饒市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第2頁
2022-2023學(xué)年江西省上饒市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第3頁
2022-2023學(xué)年江西省上饒市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第4頁
2022-2023學(xué)年江西省上饒市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年江西省上饒市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(10題)1.把6本不同的書分給李明和張強(qiáng)兩人,每人3本,不同分法的種類數(shù)為()A.

B.

C.

D.

2.垂直于同一個(gè)平面的兩個(gè)平面()A.互相垂直B.互相平行C.相交D.前三種情況都有可能

3.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},則(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}

4.已知A(3,1),B(6,1),C(4,3)D為線段BC的中點(diǎn),則向量AC與DA的夾角是()A.

B.

C.

D.

5.在等差數(shù)列{an}中,若a3+a17=10,則S19等于()A.65B.75C.85D.95

6.設(shè)l表示一條直線,α,β,γ表示三個(gè)不同的平面,下列命題正確的是()A.若l//α,α//β,則l//β

B.若l//α,l//β,則α//β

C.若α//β,β//γ,則α//γ

D.若α//β,β//γ,則α//γ

7.已知{an}是等差數(shù)列,a1+a7=-2,a3=2,則{an}的公差d=()A.-1B.-2C.-3D.-4

8.已知a=(1,2),b=(x,4)且A×b=10,則|a-b|=()A.-10

B.10

C.

D.

9.A.-1B.0C.2D.1

10.“x=1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

二、填空題(10題)11.

12.

13.若函數(shù)_____.

14.設(shè)平面向量a=(2,sinα),b=(cosα,1/6),且a//b,則sin2α的值是_____.

15.從含有質(zhì)地均勻且大小相同的2個(gè)紅球、N個(gè)白球的口袋中取出一球,若取到紅球的概率為2/5,則取得白球的概率等于______.

16.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=

17.

18.

19.拋物線的焦點(diǎn)坐標(biāo)是_____.

20.設(shè)x>0,則:y=3-2x-1/x的最大值等于______.

三、計(jì)算題(5題)21.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

22.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.

23.在等差數(shù)列{an}中,前n項(xiàng)和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.

24.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

25.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

四、簡答題(10題)26.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項(xiàng)公式;(2)令bn=2n求數(shù)列{bn}的前n項(xiàng)和Sn.

27.求過點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。

28.化簡

29.組成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個(gè)數(shù)

30.三個(gè)數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

31.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程

32.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。

33.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.

34.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。

35.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.

五、解答題(10題)36.已知a為實(shí)數(shù),函數(shù)f(x)=(x2+l)(x+a).若f(-1)=0,求函數(shù):y=f(x)在[-3/2,1]上的最大值和最小值。

37.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設(shè)bn=an+n,求數(shù)列{bn}前5項(xiàng)和S5.

38.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.

39.

40.已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.(1)求通項(xiàng)公式an;(2)設(shè)bn=2an求數(shù)列{bn}的前n項(xiàng)和Sn.

41.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

42.

43.已知橢圓C的對稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2,且|F1F2|=2,點(diǎn)(1,3/2)在該橢圓上.(1)求橢圓C的方程;(2)過F1的直線L與橢圓C相交于A,B兩點(diǎn),以F2為圓心為半徑的圓與直線L相切,求△AF2B的面積.

44.

45.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.

六、單選題(0題)46.cos215°-sin215°=()A.

B.

C.

D.-1/2

參考答案

1.D

2.D垂直于一個(gè)平面的兩個(gè)平面既可能垂直也可能平行還可能相交。

3.B集合補(bǔ)集,交集的運(yùn)算.因?yàn)镃uA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.

4.C

5.D

6.C

7.C等差數(shù)列的定義.a1+a7=a32d+a3+4d=2a3+2d,2a3+2d=-2,d=-3.

8.D向量的線性運(yùn)算.因?yàn)閍×b=10,x+8==10,x=2,a-b=(-l,-2),故|a-b|=

9.D

10.A充要條件的判斷.若x=1,則x2-1=0成立.x2-1=0,則x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要條件.

11.16

12.-4/5

13.1,

14.2/3平面向量的線性運(yùn)算,三角函數(shù)恒等變換.因?yàn)閍//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.

15.3/5古典概型的概率公式.由題可得,取出紅球的概率為2/2+n=2/5,所以n=3,即白球個(gè)數(shù)為3,取出白球的概率為3/5.

16.

,由于是等比數(shù)列,所以a4=q2a2,得q=。

17.{x|1<=x<=2}

18.

19.

,因?yàn)閜=1/4,所以焦點(diǎn)坐標(biāo)為.

20.

基本不等式的應(yīng)用.

21.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

22.

23.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

24.

25.

26.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴數(shù)列為首項(xiàng)b1=32,q=16的等比數(shù)列

27.x-7y+19=0或7x+y-17=0

28.sinα

29.

30.由已知得:由上可解得

31.

32.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

33.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時(shí)

故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)

34.

35.(1)(2)

36.

37.(1)由題可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論