




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
導(dǎo)數(shù)極值點(diǎn)偏移問題導(dǎo)數(shù)極值點(diǎn)偏移問題大題優(yōu)練12優(yōu)選例題優(yōu)選例題例1.已知函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0.(1)求a的取值范圍;(2)求證:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.【解析】(1)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0有兩個(gè)相異實(shí)根.令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)a的取值范圍為SKIPIF1<0.(2)不妨設(shè)SKIPIF1<0,由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,要證:SKIPIF1<0,只需證SKIPIF1<0.SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,只需證SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0只需證:SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0遞增,SKIPIF1<0,SKIPIF1<0成立.綜上所述,SKIPIF1<0成立.例2.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不同實(shí)根,證明:SKIPIF1<0.【答案】(1)見解析;(2)證明見解析.【解析】(1)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)證明:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由題意不妨設(shè)SKIPIF1<0,欲證SKIPIF1<0,只需證SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.故只需證SKIPIF1<0.因?yàn)镾KIPIF1<0,所以只需證SKIPIF1<0對任意的SKIPIF1<0恒成立即可,即SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,所以SKIPIF1<0成立.
模擬優(yōu)練模擬優(yōu)練1.已知函數(shù)SKIPIF1<0,SKIPIF1<0.其中SKIPIF1<0,SKIPIF1<0為常數(shù).(1)若函數(shù)SKIPIF1<0在定義域內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)已知SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)不同的零點(diǎn),求證:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.【解析】(1)SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在定義域有且僅有一個(gè)極值點(diǎn),所以SKIPIF1<0在SKIPIF1<0內(nèi)有且僅有一個(gè)變號零點(diǎn),由二次函數(shù)的圖象和性質(zhì)知SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,函數(shù)SKIPIF1<0至多有一個(gè)零點(diǎn),不符合題意;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0取得最小值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0無零點(diǎn),不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0僅有一個(gè)零點(diǎn),不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上只有一個(gè)零點(diǎn),令SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上只有一個(gè)零點(diǎn),所以SKIPIF1<0滿足題意;不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故SKIPIF1<0得證.2.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.【解析】(I)由題可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,∴SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,即SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,令SKIPIF1<0,則SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0內(nèi)為增函數(shù);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0內(nèi)為減函數(shù),∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.(2)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0內(nèi)有兩根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0,不妨設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),要證明SKIPIF1<0,只需證明SKIPIF1<0,即證明SKIPIF1<0,即證明SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0成立,SKIPIF1<0.3.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值;(2)若直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)不同交點(diǎn)SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)極小值為SKIPIF1<0,無極大值;(2)證明見解析.【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0變化時(shí),SKIPIF1<0與SKIPIF1<0變化情況如下SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0-0+SKIPIF1<0單調(diào)遞減極小值單調(diào)遞增∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有極小值為SKIPIF1<0,∴SKIPIF1<0極小值為SKIPIF1<0,無極大值.(2)由SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,由(1)知,SKIPIF1<0,SKIPIF1<0,欲證:SKIPIF1<0,需證:SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0是單調(diào)遞減函數(shù),即證:SKIPIF1<0,∵SKIPIF1<0,即證:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0時(shí),∴SKIPIF1<0,∴SKIPIF1<0,得證.4.設(shè)函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的兩個(gè)零點(diǎn),證明:SKIPIF1<0.【答案】(1)見解析;(2)證明見解析.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國硬度計(jì)市場競爭格局及投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國男士護(hù)膚品行業(yè)競爭狀況及發(fā)展趨勢分析報(bào)告
- 2025-2030年中國電熱線市場運(yùn)行狀況及前景趨勢分析報(bào)告
- 上海工程技術(shù)大學(xué)《預(yù)防口腔醫(yī)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽藥科大學(xué)《工業(yè)網(wǎng)絡(luò)與組態(tài)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 中南大學(xué)《電動(dòng)汽車原理與設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽航空航天大學(xué)北方科技學(xué)院《初中道德與法治課程標(biāo)準(zhǔn)與教材》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧中醫(yī)藥大學(xué)杏林學(xué)院《電工儀表與測量》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西金融職業(yè)技術(shù)學(xué)院《化工熱力學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年安全員《A證》考試題庫
- 《政府管制基本理論》課件
- 環(huán)境巖土工程學(xué)課件-東南大學(xué)-潘華良境巖土工程學(xué)概論-9大環(huán)境巖土工程問題
- 《紅樓夢》中寶黛之間的愛情與悲劇分析
- 養(yǎng)老產(chǎn)業(yè)并購重組
- 2024年1月浙江高考英語聽力考試試題真題完整版答案詳解+MP3文本
- 《SolidWorks建模實(shí)例教程》第5章 裝配建模及實(shí)例
- 口腔科護(hù)理教學(xué)查房
- 《趙匡胤:北宋的開國皇帝》
- 二年級 書法 開學(xué)第一課課
- 精神科病人跌倒的預(yù)防與處理
- 蒸壓加氣混凝土砌塊干燥收縮檢測記錄11969-2020
評論
0/150
提交評論