版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年八下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.2.在平面直角坐標系中,一次函數(shù)y=x﹣1和y=﹣x+1的圖象與x軸的交點及x軸上方的部分組成的圖象可以表示為函數(shù)y=|x﹣1|,當自變量﹣1≤x≤2時,若函數(shù)y=|x﹣a|(其中a為常量)的最小值為a+5,則滿足條件的a的值為()A.﹣3 B.﹣5 C.7 D.﹣3或﹣53.如圖是邊長為10的正方形鐵片,過兩個頂點剪掉一個三角形,以下四種剪法中,裁剪線長度所標的數(shù)據(jù)(單位:)不正確的()A. B.C. D.4.下列說法:①對角線互相垂直的四邊形是菱形;②矩形的對角線垂直且互相平分;③對角線相等的四邊形是矩形;④對角線相等的菱形是正方形;⑤鄰邊相等的矩形是正方形.其中正確的是()A.個 B.個 C.個 D.個5.如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學生在一次數(shù)學活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是()A.當E,F(xiàn),G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形B.當E,F(xiàn),G,H是各邊中點,且AC⊥BD時,四邊形EFGH為矩形C.當E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可以為平行四邊形D.當E,F(xiàn),G,H不是各邊中點時,四邊形EFGH不可能為菱形6.實數(shù)a,b在數(shù)軸上的對應點如圖所示,則|a﹣b|﹣的結(jié)果為()A.b B.2a﹣b C.﹣b D.b﹣2a7.二次根式在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.8.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點,則y1>y1.其中正確的個數(shù)是()A.1 B.3 C.4 D.59.用配方法解方程x2﹣6x+3=0,下列變形正確的是()A.(x﹣3)2=6 B.(x﹣3)2=3 C.(x﹣3)2=0 D.(x﹣3)2=110.若y關于x的函數(shù)y=(m-2)x+n是正比例函數(shù),則m,n應滿足的條件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2 D.n=011.如圖,菱形ABCD的周長為28,對角線AC,BD交于點O,E為AD的中點,則OE的長等于()A.2 B.3.5 C.7 D.1412.矩形是軸對稱圖形,對稱軸可以是()A. B. C. D.二、填空題(每題4分,共24分)13.27的立方根為.14.不等式組的整數(shù)解有_____個.15.學習委員調(diào)查本班學生課外閱讀情況,對學生喜愛的書籍進行分類統(tǒng)計,其中“古詩詞類”的頻數(shù)為15人,頻率為0.3,那么被調(diào)查的學生人數(shù)為________.16.從某市5000名初一學生中,隨機地抽取100名學生,測得他們的身高數(shù)據(jù),得到一個樣本,則這個樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差四個統(tǒng)計量中,服裝廠最感興趣的是__________.17.計算:(﹣4ab2)2÷(2a2b)0=_____.18.張老師公布班上6名同學的數(shù)學競賽成績時,有意公布了5個人的得分:78,92,61,85,75,又公布了6個人的平均分:80,還有一個未公布,這個未公布的得分是_____.三、解答題(共78分)19.(8分)已知:四邊形ABCD,E,F(xiàn),G,H是各邊的中點.(1)求證:四邊形EFGH是平行四邊形;(2)假如四邊形ABCD是一個矩形,猜想四邊形EFGH是什么圖形?并證明你的猜想.20.(8分)如圖,已知分別為平行四邊形的邊上的點,且.(1)求證:四邊形是平行四邊形;(2)當,且四邊形是菱形,求的長.21.(8分)已知點A(4,0)及在第一象限的動點P(x,y),且x+y=5,0為坐標原點,設△OPA的面積為S.(1)求S關于x的函數(shù)表達式;(2)求x的取值范圍;(3)當S=4時,求P點的坐標.22.(10分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規(guī)作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.23.(10分)某車行經(jīng)銷的A型自行車去年6月份銷售總額為1.6萬元,今年由于改造升級每輛車售價比去年增加200元,今年6月份與去年同期相比,銷售數(shù)量相同,銷售總額增加25%.今年A,B兩種型號車的進價和售價如下表:
(1)求今年A型車每輛售價多少元?
(2)該車行計劃7月份用不超過4.3萬元的資金新進一批A型車和B型車共50輛,應如何進貨才能使這批車售完后獲利最多?24.(10分)在一個邊長為(2+3)cm的正方形的內(nèi)部挖去一個長為(2+)cm,寬為(﹣)cm的矩形,求剩余部分圖形的面積.25.(12分)如圖,在正方形內(nèi)任取一點,連接,在⊿外分別以為邊作正方形和.⑴.按題意,在圖中補全符合條件的圖形;⑵.連接,求證:⊿≌⊿;⑶.在補全的圖形中,求證:∥.26.求不等式組2(x-1)≥x-4x+7
參考答案一、選擇題(每題4分,共48分)1、D【解析】
根據(jù)軸對稱圖形的定義和中心對稱圖形的定義逐一判斷即可.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形.故本選項不符合題意;B.不是軸對稱圖形,是中心對稱圖形.故本選項不符合題意;C.是軸對稱圖形,不是中心對稱圖形.故本選項不符合題意;D.是軸對稱圖形,也是中心對稱圖形.故本選項符合題意.故選:D.【點睛】此題考查的是軸對稱圖形的識別和中心對稱圖形的識別,掌握軸對稱圖形的定義和中心對稱圖形的定義是解決此題的關鍵.2、A【解析】
分三種情形討論求解即可解決問題;【詳解】解:對于函數(shù)y=|x﹣a|,最小值為a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此時x=﹣1時,y有最小值,不符合題意.情形2:x=﹣1時,有最小值,此時函數(shù)y=x﹣a,由題意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合題意.情形2:當x=2時,有最小值,此時函數(shù)y=﹣x+a,由題意:﹣2+a=a+1,方程無解,此種情形不存在,綜上所述,a=﹣2.故選A.【點睛】本題考查兩直線相交或平行問題,一次函數(shù)的性質(zhì)等知識,解題的關鍵是學會用分類討論的思想解決問題,屬于中考??碱}型.3、A【解析】試題分析:正方形的對角線的長是,所以正方形內(nèi)部的每一個點,到正方形的頂點的距離都有小于14.14,故答案選A.考點:正方形的性質(zhì),勾股定理.4、B【解析】
利用正方形的判定和性質(zhì),菱形的判定和性質(zhì),矩形的判定和性質(zhì)進行依次判斷可求解.【詳解】解:①對角線互相垂直的四邊形不一定是菱形,故①錯誤;
②矩形的對角線相等且互相平分,故②錯誤;
③對角線相等的四邊形不一定是矩形,故③錯誤;
④對角線相等的菱形是正方形,故④正確,
⑤鄰邊相等的矩形是正方形,故⑤正確
故選B.【點睛】本題考查了正方形的判定和性質(zhì),菱形的判定和性質(zhì),矩形的判定和性質(zhì),靈活運用這些性質(zhì)和判定解決問題是本題的關鍵.5、D【解析】試題分析:根據(jù)題意,可知,連接四邊形各邊中點所得的四邊形必為平行四邊形,根據(jù)中點四邊形的性質(zhì)進行判斷:A.當E,F(xiàn),G,H是各邊中點,且AC=BD時,EF=FG=GH=HE,故四邊形EFGH為菱形,故A正確;B.當E,F(xiàn),G,H是各邊中點,且AC⊥BD時,∠EFG=∠FGH=∠GHE=90°,故四邊形EFGH為矩形,故B正確;C.當E,F(xiàn),G,H不是各邊中點時,EF∥HG,EF=HG,故四邊形EFGH為平行四邊形,故C正確;D.當E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可能為菱形,故D錯誤;故選D.考點:中點四邊形6、A【解析】
由數(shù)軸可知a<0<b,根據(jù)絕對值的性質(zhì)和二次根式的性質(zhì)化簡即可.【詳解】解:由數(shù)軸可知,a<0<b,則a﹣b<0,則|a﹣b|﹣=﹣a+b+a=b.故選:A.【點睛】本題考查的是絕對值和二次根式,熟練掌握絕對值的性質(zhì)和二次根式的性質(zhì)是解題的關鍵.7、B【解析】
根據(jù)二次根式的被開方數(shù)是非負數(shù)解題.【詳解】解:依題意,得
a-1≥0,
解得,a≥1.
故選:B.【點睛】考查了二次根式的意義和性質(zhì).概念:式子(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.8、D【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點睛】考查二次函數(shù)的圖象與性質(zhì),解題的關鍵是熟練運用數(shù)形結(jié)合的思想.9、A【解析】
把常數(shù)項3移到等號的右邊,再在等式的兩邊同時加上一次項系數(shù)﹣6的一半的平方,配成完全平方的形式,從而得出答案.【詳解】解:∵x2﹣6x+3=0,∴x2﹣6x=﹣3,∴x2﹣6x+9=6,即(x﹣3)2=6,故選:A.【點睛】本題考查了一元二次方程的解法---配方法,熟練掌握配方的步驟是解題的關鍵10、A【解析】試題解析:若y關于x的函數(shù)是正比例函數(shù),解得:故選A.11、B【解析】
由菱形的周長可求得AB的長,再利用三角形中位線定理可求得答案0【詳解】∵四邊形ABCD為菱形,∴AB28=7,且O為BD的中點.∵E為AD的中點,∴OE為△ABD的中位線,∴OEAB=3.1.故選B.【點睛】本題考查了菱形的性質(zhì),由條件確定出OE為△ABD的中位線是解題的關鍵.12、D【解析】
根據(jù)軸對稱圖形的概念求解.矩形是軸對稱圖形,可以左右重合和上下重合.【詳解】解:矩形是軸對稱圖形,可以左右重合和上下重合,故可以是矩形的對稱軸,故選:D.【點睛】此題主要考查了軸對稱的概念,軸對稱的關鍵是尋找對稱軸,兩邊圖象折疊后可重合.二、填空題(每題4分,共24分)13、1【解析】找到立方等于27的數(shù)即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個數(shù)的立方根,用到的知識點為:開方與乘方互為逆運算14、3【解析】
首先解每個不等式,把解集在數(shù)軸上表示出來即可得到不等式組的解集,然后確定解集中的整數(shù),便可得到整數(shù)解得個數(shù).【詳解】,解不等式得:,解不等式得:,不等式的解集是,則整數(shù)解是:,共個整數(shù)解.故答案為:.【點睛】本題考查了一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.15、50【解析】
根據(jù)頻數(shù)與頻率的數(shù)量關系即可求出答案.【詳解】解:設被調(diào)查的學生人數(shù)為x,
∴,
∴x=50,經(jīng)檢驗x=50是原方程的解,
故答案為:50【點睛】本題考查頻數(shù)與頻率,解題的關鍵是正確理解頻數(shù)與頻率的關系,本題屬于基礎題型.16、眾數(shù)【解析】
服裝廠最感興趣的是哪種尺碼的服裝售量較多,也就是需要參照指標眾數(shù).【詳解】解:由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故服裝廠最感興趣的指標是眾數(shù).故答案為:眾數(shù).【點睛】本題主要考查了統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.17、16a2b1【解析】
直接利用整式的除法運算法則以及積的乘方運算法則計算得出答案.【詳解】解:(-1ab2)2÷(2a2b)0=16a2b1÷1=16a2b1,故答案為:16a2b1.【點睛】本題主要考查了整式的乘除運算和零指數(shù)冪,正確掌握相關運算法則是解題關鍵.18、1.【解析】
首先設這個未公布的得分是x,根據(jù)算術平均數(shù)公式可得關于x的方程,解方程即可求得答案.【詳解】設這個未公布的得分是x,則:,解得:x=1,故答案為:1.【點睛】本題考查了算術平均數(shù),關鍵是掌握對于n個數(shù)x1,x2,…,xn,則就叫做這n個數(shù)的算術平均數(shù).三、解答題(共78分)19、(1)見解析;(2)四邊形EFGH是菱形,理由見解析【解析】
(1)根據(jù)三角形中位線定理可EF∥AC∥HG,HE∥BD∥GF,即可解答.(2)根據(jù)菱形是鄰邊相等的平行四邊形,證明EF=AC=BD=EH,即可解答.【詳解】(1)∵E,F(xiàn),G,H是各邊的中點,∴EF∥AC∥HG,HE∥BD∥GF,∴四邊形EFGH是平行四邊形;(2)四邊形ABCD是一個矩形,四邊形EFGH是菱形;∵四邊形ABCD是矩形,∴AC=BD,∴EF=AC=BD=EH,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.【點睛】此題考查平行四邊形的判定,菱形的判定,解題關鍵在于利用三角形中位線定理進行求證,掌握各判定定理.20、(1)詳見解析;(2)10【解析】
(1)首先由已知證明AM∥NC,BN=DM,推出四邊形AMCN是平行四邊形.(2)由已知先證明AN=BN,即BN=AN=CN,從而求出BN的長.【詳解】(1)證明:四邊形是平行四邊形,又.即,,四邊形是平行四邊形;(2)四邊形是菱形,,又,即,,,.【點睛】此題考查的知識點是平行四邊形的判定和性質(zhì)及菱形的性質(zhì),解題的關鍵是運用平行四邊形的性質(zhì)和菱形的性質(zhì)推出結(jié)論.21、(1)S=10﹣2x;(2)0<x<5;(3)(3,2)【解析】
(1)根據(jù)題意畫出圖形,由x+y=5可知y=5﹣x,再由三角形的面積公式即可得出結(jié)論;
(2)由點P(x,y)在第一象限,且x+y=5得出x的取值范圍即可;
(3)把S=4代入(1)中的關系式求出x的值,進而可得出y的值.【詳解】(1)如圖:∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵點P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【點睛】本題考查的是一次函數(shù)的性質(zhì),根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關鍵.22、(1)見解析;(2)1.【解析】
根據(jù)角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關系即可求解.【詳解】(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復雜作圖;平行四邊形的性質(zhì)23、(1)型車每輛售價為1000元;(2)型車30輛、型車20輛,獲利最多.【解析】
(1)設今年型車每輛售價為元,則去年型車每輛售價為元,根據(jù)數(shù)量總價單價結(jié)合今年6月份與去年同期相比銷售數(shù)量相同,即可得出關于的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設購進型車輛,則購進型車輛,根據(jù)總價單價數(shù)量結(jié)合總費用不超過4.3萬元,即可得出關于的一元一次不等式,解之即可得出的取值范圍,再根據(jù)銷售利潤單輛利潤購進數(shù)量即可得出銷售利潤關于的函數(shù)關系式,利用一次函數(shù)的性質(zhì)解決最值問題即可.【詳解】解:(1)設今年型車每輛售價為元,則去年型車每輛售價為元,根據(jù)題意得:,解得:,經(jīng)檢驗,是原分式方程的解.答:今年型車每輛售價為1000元.(2)設購進型車輛,則購進型車輛,根據(jù)題意得:,解得:.銷售利潤為,,當時,銷售利潤最多.答:當購進型車30輛、購進型車20輛時,才能使這批車售完后獲利最多.【點睛】本題考查了分式方程的應用、一次函數(shù)的最值以及一元一次不等式的應用,解題的關鍵是:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024社保政策解讀與合規(guī)操作指導協(xié)議
- 初級會計職稱考試《初級會計實務》第一章同步強化習題及答案
- 2024年國家電網(wǎng)招聘之法學類題庫附答案(滿分必刷)
- 2024年國家電網(wǎng)招聘之財務會計類題庫帶答案
- 2024年公務員考試中寧縣《行政職業(yè)能力測驗》高分沖刺試卷含解析
- 2024年公務員考試雅江縣《行政職業(yè)能力測驗》臨考沖刺試題含解析
- 創(chuàng)新人才的需求分析
- Unit 1 Art Learning About Language Build up your vocabulary 說課稿-2023-2024學年高中英語人教版(2019)選擇性必修第三冊
- 2025年物業(yè)項目工作計劃
- 2025教研室工作計劃范文
- 神通數(shù)據(jù)庫管理系統(tǒng)v7.0企業(yè)版-3概要設計說明書
- 生產(chǎn)異常問題反饋流程圖
- GB/T 20492-2006鋅-5%鋁-混合稀土合金鍍層鋼絲、鋼絞線
- GB/T 20197-2006降解塑料的定義、分類、標志和降解性能要求
- 公司變更評審表
- 自由戰(zhàn)爭-簡體素材表
- 新概念第三冊課文60全(打印版)
- 四年級硬筆書法教案教學設計共16課
- 自考現(xiàn)代漢語復習資料精品資料
- 論財務共享服務模式下財務稽核體系
- 19鍋爐水壓試驗記錄
評論
0/150
提交評論