




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年湖南省郴州市普通高校對口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.直線:y+4=0與圓(x-2)2+(y+l)2=9的位置關(guān)系是()
A.相切B.相交且直線不經(jīng)過圓心C.相離D.相交且直線經(jīng)過圓心
2.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,則tanθ的值為()A.2B.-2C.1/2D.-1/2
3.已知橢圓的一個焦點為F(0,1),離心率e=1/2,則該橢圓的標(biāo)準(zhǔn)方程為()A.x2/3+y2/4=1
B.x2/4+y2/3=1
C.x2/2+y2=1
D.y2/2+x2=1
4.A.1B.8C.27
5.A.B.C.
6.若f(x)=1/log1/2(2x+1),則f(x)的定義域為()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
7.已知等差數(shù)列{an}的前n項和為Sn,a4=2,S10=10,則a7的值為()A.0B.1C.2D.3
8.若logmn=-1,則m+3n的最小值是()A.
B.
C.2
D.5/2
9.直線L過(-1,2)且與直線2x-3y+5=0垂直,則L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
10.已知定義在R上的函數(shù)f(x)圖象關(guān)于直線x=l對稱,若X≥1時,f(x)=x(1-x),則f(0)=()A.OB.-2C.-6D.-12
二、填空題(10題)11.已知正實數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
12.為橢圓的焦點,P為橢圓上任一點,則的周長是_____.
13.設(shè)平面向量a=(2,sinα),b=(cosα,1/6),且a//b,則sin2α的值是_____.
14.若事件A與事件ā互為對立事件,且P(ā)=P(A),則P(ā)=
。
15.如圖所示,某人向圓內(nèi)投鏢,如果他每次都投入圓內(nèi),那么他投中正方形區(qū)域的概率為____。
16.若事件A與事件互為對立事件,則_____.
17.在△ABC中,C=60°,AB=,BC=,那么A=____.
18.長方體中,具有公共頂點A的三個面的對角線長分別是2,4,6,那么這個長方體的對角線的長是_____.
19.圓心在直線2x-y-7=0上的圓C與y軸交于兩點A(0,-4),B(0,一2),則圓C的方程為___________.
20.過點A(3,2)和點B(-4,5)的直線的斜率是_____.
三、計算題(5題)21.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
22.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
23.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
24.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
25.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
四、簡答題(10題)26.在1,2,3三個數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)中,隨機抽取一個數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.
27.由三個正數(shù)組成的等比數(shù)列,他們的倒數(shù)和是,求這三個數(shù)
28.己知邊長為a的正方形ABCD,PA丄底面ABCD,PA=a,求證,PC丄BD
29.求k為何值時,二次函數(shù)的圖像與x軸(1)有2個不同的交點(2)只有1個交點(3)沒有交點
30.據(jù)調(diào)查,某類產(chǎn)品一個月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個月內(nèi)被投訴不超過1次的概率
31.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由
32.已知雙曲線C的方程為,離心率,頂點到漸近線的距離為,求雙曲線C的方程
33.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。
34.證明:函數(shù)是奇函數(shù)
35.已知是等差數(shù)列的前n項和,若,.求公差d.
五、解答題(10題)36.已知圓C的圓心在直線y=x上,半徑為5且過點A(4,5),B(1,6)兩點.(1)求圓C的方程;(2)過點M(-2,3)的直線l被圓C所截得的線段的長為8,求直線l的方程.
37.
38.設(shè)橢圓x2/a2+y2/b2的方程為點O為坐標(biāo)原點,點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點M在線段AB上,滿足|BM|=2|MA|直線OM的斜率為.(1)求E的離心率e(2)設(shè)點C的坐標(biāo)為(0,-b),N為線段AC的中點,證明:MN丄AB
39.已知橢圓C的重心在坐標(biāo)原點,兩個焦點的坐標(biāo)分別為F1(4,0),F(xiàn)2(-4,0),且橢圓C上任一點到兩焦點的距離和等于10.求:(1)橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓C上一點M使得直線F1M與直線F2M垂直,求點M的坐標(biāo).
40.
41.
42.
43.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,在C上;(1)求C的方程;(2)直線L不過原點O且不平行于坐標(biāo)軸,L與C有兩個交點A,B,線段AB的中點為M.證明:直線OM的斜率與直線L的斜率的乘積為定值.
44.甲、乙兩人進行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
45.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1時有極值0.(1)求常數(shù)a,b的值;(2)求f(x)的單調(diào)區(qū)間.
六、單選題(0題)46.A.偶函數(shù)B.奇函數(shù)C.既不是奇函數(shù),也不是偶函數(shù)D.既是奇函數(shù),也是偶函數(shù)
參考答案
1.A直線與圓的位置關(guān)系.圓心(2,-1)到直線y=-4的距離為|-4-(-1)|=3,而圓的半徑為3,所以直線與圓相切,
2.A平面向量的線性運算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.
3.A橢圓的標(biāo)準(zhǔn)方程.由題意得,橢圓的焦點在y軸上,且c=l,e=c/a=1/2,故a=2,b=則補圓的標(biāo)準(zhǔn)方程為x2/3+y2/4=1
4.C
5.A
6.C函數(shù)的定義域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).
7.A
8.B對數(shù)性質(zhì)及基本不等式求最值.由㏒mn=-1,得m-1==n,則mn=1.由于m>0,n>0,∴m+3n≥2.
9.A由于直線與2x-3y+5=0垂直,因此可以設(shè)直線方程為3x+2y+k=0,又直線L過點(-1,2),代入直線方程得3*(-1)+2*2+k=0,因此k=-1,所以直線方程為3x+2y-1=0。
10.B函數(shù)圖像的對稱性.由對稱性可得f(0)=f(2)=2(1-2)=-2
11.2基本不等式求最值.由題
12.18,
13.2/3平面向量的線性運算,三角函數(shù)恒等變換.因為a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
14.0.5由于兩個事件是對立事件,因此兩者的概率之和為1,又兩個事件的概率相等,因此概率均為0.5.
15.2/π。
16.1有對立事件的性質(zhì)可知,
17.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由題知BC<AB,得A<C,所以A=45°.
18.
19.(x-2)2+(y+3)2=5圓的方程.圓心在AB中垂線y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圓C的方程為(x-2)2+(y+3)2=5
20.
21.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
22.
23.
24.
25.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
26.1,2,3三個數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個故所求概率為
27.設(shè)等比數(shù)列的三個正數(shù)為,a,aq由題意得解得,a=4,q=1或q=解得這三個數(shù)為1,4,16或16,4,1
28.證明:連接ACPA⊥平面ABCD,PC是斜線,BD⊥ACPC⊥BD(三垂線定理)
29.∵△(1)當(dāng)△>0時,又兩個不同交點(2)當(dāng)A=0時,只有一個交點(3)當(dāng)△<0時,沒有交點
30.設(shè)事件A表示“一個月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
31.(1)(2)∴又∴函數(shù)是偶函數(shù)
32.
33.
∵μ//v∴(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)據(jù)庫事務(wù)管理的核心概念與應(yīng)用試題及答案
- 2024年寧波工程學(xué)院輔導(dǎo)員考試真題
- 2024年南京林業(yè)大學(xué)輔導(dǎo)員考試真題
- 2024年西安市雁塔區(qū)第六小學(xué)招聘筆試真題
- 戰(zhàn)略管理中的法律風(fēng)險識別試題及答案
- 2024年廣州市培藝學(xué)校老師招聘筆試真題
- 2024年成都理工大學(xué)選調(diào)工作人員筆試真題
- 生物與藝術(shù)結(jié)合的跨界教學(xué)探索計劃
- 企業(yè)戰(zhàn)略創(chuàng)新與市場風(fēng)險試題及答案
- 優(yōu)化系統(tǒng)資源的使用策略試題及答案
- 12J3-3蒸壓加氣混凝土砌塊墻
- 2023年版《安寧療護實踐指南(試行)》解讀課件
- 7《玩磁鐵》(教學(xué)設(shè)計)-一年級上冊科學(xué)青島版
- 2024建筑工程施工承包人工費合同書
- 四川省成都市2024年七年級下學(xué)期期末數(shù)學(xué)試題附答案
- 思辨與創(chuàng)新智慧樹知到期末考試答案章節(jié)答案2024年復(fù)旦大學(xué)
- 2024年湖北水利發(fā)展集團有限公司招聘筆試沖刺題(帶答案解析)
- MOOC 算法設(shè)計與分析-武漢理工大學(xué) 中國大學(xué)慕課答案
- 2024春期國開電大思政課《中國近現(xiàn)代史綱要》在線形考(專題檢測一至八)試題及答案
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- 2024貓砂行業(yè)調(diào)研報告(比億奇、LORDE)-解數(shù)咨詢
評論
0/150
提交評論