




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021年江西省上饒市普通高校對口單招數(shù)學摸底卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.下列函數(shù)為偶函數(shù)的是A.B.C.
2.cos240°=()A.1/2
B.-1/2
C./2
D.-/2
3.下列函數(shù)中是偶函數(shù)的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx
4.設是l,m兩條不同直線,α,β是兩個不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m
B.若l//α,m⊥l,則m⊥α
C.若l//α,m//α,則l//m
D.若l⊥α,l///β則a⊥β
5.某商品降價10%,欲恢復原價,則應提升()A.10%
B.20%
C.
D.
6.A.B.(2,-1)
C.D.
7.拋物線y2-4x+17=0的準線方程是()A.x=2B.x=-2C.x=1D.x=-1
8.某人從一魚池中捕得120條魚,做了記號之后,再放回池中,經(jīng)過一定的時間后,再從該魚池中捕得100條魚,結(jié)果發(fā)現(xiàn)有記號的魚為10條(假定魚池中魚的數(shù)量既不減少,也不增加),則魚池中大約有魚()A.120條B.1000條C.130條D.1200條
9.某校選修乒乓球課程的學生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法在這70名學生中抽取一個樣本,已知在高一年級的學生中抽取了6名,則在高二年級的學生中應抽取的人數(shù)為()A.6B.8C.10D.12
10.已知全集U=R,集合A={x|x>2},則CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}
11.(X-2)6的展開式中X2的系數(shù)是D()A.96B.-240C.-96D.240
12.函數(shù)y=-(x-2)|x|的遞增區(qū)間是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)
13.下列函數(shù)中,是增函數(shù),又是奇函數(shù)的是(〕A.y=
B.y=1/x
C.y=x2
D.y=x1/3
14.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8
15.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
16.設i是虛數(shù)單位,則復數(shù)(1-i)(1+2i)=()A.3+3iB.-1+3iC.3+iD.-1+i
17.已知i是虛數(shù)單位,則1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i
18.若函數(shù)f(x-)=x2+,則f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
19.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
20.已知{an}是等差數(shù)列,a1+a7=-2,a3=2,則{an}的公差d=()A.-1B.-2C.-3D.-4
二、填空題(10題)21.
22.在△ABC中,AB=,A=75°,B=45°,則AC=__________.
23.在平面直角坐標系xOy中,直線2x+ay-1=0和直線(2a-1)x-y+1=0互相垂直,則實數(shù)a的值是______________.
24.
25.
26.
27.己知等比數(shù)列2,4,8,16,…,則2048是它的第()項。
28.設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f⑴=______.
29.
30.
三、計算題(10題)31.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
32.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
33.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
34.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
35.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
36.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
37.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
38.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
39.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
40.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
四、簡答題(10題)41.已知求tan(a-2b)的值
42.解不等式組
43.證明:函數(shù)是奇函數(shù)
44.已知橢圓和直線,求當m取何值時,橢圓與直線分別相交、相切、相離。
45.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。
46.已知cos=,,求cos的值.
47.據(jù)調(diào)查,某類產(chǎn)品一個月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個月內(nèi)被投訴不超過1次的概率
48.若α,β是二次方程的兩個實根,求當m取什么值時,取最小值,并求出此最小值
49.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長
50.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程
五、解答題(10題)51.
52.已知函數(shù)f(x)=sinx+cosx,x∈R.(1)求函數(shù)f(x)的最小正周期和最大值;(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?
53.
54.如圖,在四棱錐P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F(xiàn)分別是AP,AD的中點.連接BD求證:(1)直線EF//平面PCD;(2)平面BEF丄平面PAD.
55.某學校高二年級一個學習興趣小組進行社會實踐活動,決定對某“著名品牌”A系列進行市場銷售量調(diào)研,通過對該品牌的A系列一個階段的調(diào)研得知,發(fā)現(xiàn)A系列每日的銷售量f(x)(單位:千克)與銷售價格x(元/千克)近似滿足關(guān)系式f(x)=a/x-4+10(1-7)2其中4<x<7,a為常數(shù).已知銷售價格為6元/千克時,每日可售出A系列15千克.(1)求函數(shù)f(x)的解析式;(2)若A系列的成本為4元/千克,試確定銷售價格x的值,使該商場每日銷售A系列所獲得的利潤最大.
56.已知橢圓的中心為原點,焦點在x軸上,離心率為,且經(jīng)過點M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點A,B直線MA,MB與x軸分別交于點E,F(xiàn).(1)求橢圓的標準方程;(2)求m的取值范圍.
57.已知遞增等比數(shù)列{an}滿足:a2+a3+a4=14,且a3+1是a2,a4的等差中項.(1)求數(shù)列{an}的通項公式;(2)若數(shù)列{an}的前n項和為Sn,求使Sn<63成立的正整數(shù)n的最大值.
58.
59.已知函數(shù)(1)f(π/6)的值;(2)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
60.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.
六、證明題(2題)61.
62.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
參考答案
1.A
2.B誘導公式的運用.cos240°=cos(60°+180°)=-cos60°=-1/2
3.D
4.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對于A:l與m可能異面,排除A;對于B;m與α可能平行或相交,排除B;對于C:l與m可能相交或異面,排除C
5.C
6.A
7.D
8.D抽樣分布.設魚池中大約有魚M條,則120/M=10/100解得M=1200
9.B分層抽樣方法.試題分析:根據(jù)題意,由分層抽樣知識可得:在高二年級的學生中應抽取的人數(shù)為:40×6/30=8
10.D補集的計算.由A={x|x>2},全集U=R,則CuA={x|x≤2}
11.D
12.A
13.D函數(shù)奇偶性和單調(diào)性的判斷.奇函數(shù)只有B,D,而B不是增函數(shù).
14.A
15.D
16.C復數(shù)的運算.(1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,
17.B復數(shù)的運算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2
18.C由題可知,f(0)=2=f(-1+1),因此x=-1時,函數(shù)值為2,所以正確答案為C。
19.B
20.C等差數(shù)列的定義.a1+a7=a32d+a3+4d=2a3+2d,2a3+2d=-2,d=-3.
21.{x|1<=x<=2}
22.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
23.2/3兩直線的位置關(guān)系.由題意得-2/a×(2a-1)=-1,解得a=2/3
24.-2/3
25.4.5
26.1<a<4
27.第11項。由題可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
28.-3.函數(shù)的奇偶性的應用.∵f(x)是定義在只上的奇函數(shù),且x≤0時,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.
29.10函數(shù)值的計算.由=3,解得a=10.
30.60m
31.
32.
33.
34.
35.
36.
37.
38.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
39.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
40.
41.
42.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為
43.證明:∵∴則,此函數(shù)為奇函數(shù)
44.∵∴當△>0時,即,相交當△=0時,即,相切當△<0時,即,相離
45.
∵μ//v∴(2x+1.4)=(2-x,3)得
46.
47.設事件A表示“一個月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
48.
49.
50.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為
51.
52.(1)函數(shù)f(x)=sinx+cosx=sin(x+π/4),∴f(x)的最小正周期是2π,最大值是(2)將y=sinx的圖象向左平行移動π/4個單位,得到sin(x+π/4)的圖象,再將y==sin(x+π/4)的圖象上每-點的縱坐標伸長到原來的倍,橫坐標不變,所得圖象即為函數(shù)y=f(x)的圖象.
53.
54.(1)如圖,在APAD中,因為E,F(xiàn)分別為AP,AD的中點,所以EF//PD又因為EF不包含于平面PCD,PD包含于平面PCD,所以直線EF//平面PCD.(2)因為AB=AD,∠BAD=60°,所以△ABD為正三角形.因為F是AD的中點,所以BF⊥AD因為平面PAD⊥平面ABCD,所以BF包含于平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD又因為BF包含于平面BEF,所以平面BEF⊥平面PAD.
55.(1)由題意可知,當x=6時,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)設該商場每日銷售A系列所獲得的利潤為h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以當4<x<5時,h(x)>0,h(x)在(4,5]為增函數(shù);當5<x<7,h(x)<0,h(x)在[5,7)為減函數(shù),故當x=5時,函數(shù)h(x)在區(qū)間(4,7)內(nèi)有極大值點,也是最大值點,即x=5時函數(shù)h(x)取得最大值50.所以當銷售價格為5元/千克時,A系列每日所獲得的利潤最大.
56.(1)設橢圓的方程為x2/a2+y2/b2=1因為e=,所以a2=4b2,又因為橢圓過點M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故橢圓標準方x2/20+y2/5=1(2)將y=m+x:代入x2/20+y2/5=1并整理得5x2+8mx+4m2-20=0令△=(8m2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基因編輯技術(shù)員與生物工程企業(yè)合作協(xié)議
- 患者尿管護理規(guī)范與實施
- 冬春季傳染病防控指南
- 餐廳技術(shù)加盟協(xié)議書
- 被迫寫下婚前協(xié)議書
- 解除勞動和解協(xié)議書
- 餐飲股東入股協(xié)議書
- 訓練籃球安全協(xié)議書
- 飯?zhí)檬程贸邪鼌f(xié)議書
- 銷售總監(jiān)聘請協(xié)議書
- 狀元展廳方案策劃
- 土壤農(nóng)化分析實驗智慧樹知到期末考試答案章節(jié)答案2024年甘肅農(nóng)業(yè)大學
- 鳶飛魚躍:〈四書〉經(jīng)典導讀智慧樹知到期末考試答案章節(jié)答案2024年四川大學
- 空壓機日常維護保養(yǎng)點檢記錄表
- MOOC 統(tǒng)計學-南京審計大學 中國大學慕課答案
- 中國風水滴石穿成語故事模板
- 福建省廈門市集美區(qū)2023屆小升初語文試卷(含解析)
- (高清版)TDT 1001-2012 地籍調(diào)查規(guī)程
- 毛澤東詩詞鑒賞
- 電機與拖動(高職)全套教學課件
- 關(guān)于開展涉密測繪成果保密的自查報告
評論
0/150
提交評論