《解方程》教學(xué)反思10篇_第1頁(yè)
《解方程》教學(xué)反思10篇_第2頁(yè)
《解方程》教學(xué)反思10篇_第3頁(yè)
《解方程》教學(xué)反思10篇_第4頁(yè)
《解方程》教學(xué)反思10篇_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《解方程》教學(xué)反思10篇《解方程》教學(xué)反思1本節(jié)課的學(xué)生學(xué)習(xí)的重難點(diǎn)是掌握較復(fù)雜方程的解法,會(huì)正確分析題目中的數(shù)量關(guān)系;學(xué)習(xí)目標(biāo)是進(jìn)一步掌握列方程解決問(wèn)題的方式。這一小節(jié)內(nèi)容是在前面初步學(xué)會(huì)列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計(jì)算應(yīng)用題。例1若用算術(shù)方式解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯(cuò)誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。一、從學(xué)生喜聞樂(lè)見(jiàn)的事物入手,降低問(wèn)題的難度。解稍復(fù)雜的方程這部分內(nèi)容煩瑣乏味,解答例1這類(lèi)應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準(zhǔn)題量的等量關(guān)系。我從學(xué)生喜歡的事物入手,引出數(shù)學(xué)問(wèn)題,激發(fā)學(xué)生的”學(xué)習(xí)數(shù)學(xué)的興趣,又為學(xué)習(xí)新知識(shí)做了很多的鋪墊。二、放手讓學(xué)生思考、解答,選擇解題最佳方案。讓學(xué)生當(dāng)小老師,從問(wèn)題中找出數(shù)量之間的關(guān)系,弄清解決問(wèn)題的思路,展示講解自己的思考過(guò)程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問(wèn)題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過(guò)的方式來(lái)解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再?gòu)闹羞x擇最佳解題方案。這樣既突出了最佳解題思路,又強(qiáng)化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進(jìn)了學(xué)生邏輯思維的發(fā)展。三、教會(huì)學(xué)生學(xué)習(xí)方式,比教會(huì)知識(shí)更重要。應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方式,啟迪思維,提高解題能力。這節(jié)課的教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫(huà),了解畫(huà)面信息,白色多少塊,黑色多少塊,白色比黑色少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫(huà)線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問(wèn)題的方式。讓學(xué)生成為學(xué)習(xí)的主人,參與到教學(xué)的全過(guò)程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會(huì)分析應(yīng)用題的解題方式,一句話,教會(huì)學(xué)生學(xué)習(xí)方式比教會(huì)知識(shí)更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過(guò)程的組織者、引導(dǎo)者?!督夥匠獭方虒W(xué)反思2本節(jié)課的學(xué)生學(xué)習(xí)的重難點(diǎn)是掌握較復(fù)雜方程的解法,會(huì)正確分析題目中的數(shù)量關(guān)系;學(xué)習(xí)目標(biāo)是進(jìn)一步掌握列方程解決問(wèn)題的方式。這一小節(jié)內(nèi)容是在前面初步學(xué)會(huì)列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計(jì)算應(yīng)用題。例1若用算術(shù)方式解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯(cuò)誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。一、從學(xué)生喜聞樂(lè)見(jiàn)的事物入手,降低問(wèn)題的難度。解稍復(fù)雜的方程這部分內(nèi)容煩瑣乏味,解答例1這類(lèi)應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準(zhǔn)題量的等量關(guān)系。我從學(xué)生喜歡的事物入手,引出數(shù)學(xué)問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,又為學(xué)習(xí)新知識(shí)做了很多的鋪墊。二、放手讓學(xué)生思考、解答,選擇解題最佳方案。讓學(xué)生當(dāng)小老師,從問(wèn)題中找出數(shù)量之間的關(guān)系,弄清解決問(wèn)題的思路,展示講解自己的思考過(guò)程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問(wèn)題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過(guò)的方式來(lái)解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再?gòu)闹羞x擇最佳解題方案。這樣既突出了最佳解題思路,又強(qiáng)化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進(jìn)了學(xué)生邏輯思維的發(fā)展。三、教會(huì)學(xué)生學(xué)習(xí)方式,比教會(huì)知識(shí)更重要。應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方式,啟迪思維,提高解題能力。這節(jié)課的.教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫(huà),了解畫(huà)面信息,白色多少塊,黑色多少塊,白色比黑色少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫(huà)線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問(wèn)題的方式。讓學(xué)生成為學(xué)習(xí)的主人,參與到教學(xué)的全過(guò)程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會(huì)分析應(yīng)用題的解題方式,一句話,教會(huì)學(xué)生學(xué)習(xí)方式比教會(huì)知識(shí)更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過(guò)程的組織者、引導(dǎo)者?!督夥匠獭方虒W(xué)反思3本節(jié)課的內(nèi)容是在學(xué)生學(xué)了等式的性質(zhì)和解形如a+x=bx—a=bax=bx÷a=b這樣的一般方程基礎(chǔ)進(jìn)步行教學(xué)的。成功之處:怎么解決形如a—x=ba÷x=b這樣的特殊方程,關(guān)鍵是啟發(fā)學(xué)生思考,根據(jù)哪一條等式性質(zhì),怎樣將新的問(wèn)題轉(zhuǎn)化為已經(jīng)解決的舊的問(wèn)題。在教學(xué)中,我首先讓學(xué)生試做看看遇到了什么樣的難題,部分學(xué)生發(fā)現(xiàn)20—x=9解:20—x—20=9—20在解決問(wèn)題的過(guò)程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當(dāng)學(xué)生無(wú)從下手,不知所措的情形下,啟發(fā)學(xué)生當(dāng)我們遇到新問(wèn)題時(shí)怎么解決呢?學(xué)生會(huì)想到聯(lián)系前面學(xué)習(xí)的舊知識(shí)來(lái)解決,那你認(rèn)為應(yīng)該把這樣的減法方程轉(zhuǎn)化為什么運(yùn)算的方程呢?學(xué)生很容易想到把這樣的減法方程轉(zhuǎn)化為加法方程就可以解決新問(wèn)題,接著教師再緊跟著啟發(fā)學(xué)生,怎么根據(jù)我們學(xué)過(guò)的知識(shí)進(jìn)行轉(zhuǎn)化呢?通過(guò)學(xué)生思考、討論和交流,可以根據(jù)等式的性質(zhì)進(jìn)行轉(zhuǎn)化,從而得出:20—x=9在解決特殊方程的過(guò)程中,學(xué)生有的解:20—x+x=9+x還想到利用加減法之間的關(guān)系來(lái)解決,直20=9+x接得出9+x=20也是可以的,肯定學(xué)生的9+x=20思考方式的合理性,但是也要告訴學(xué)生,9+x—9=20—9這樣的思考方式到了學(xué)校解決更加復(fù)雜X=11的方程就無(wú)能為力了,為了使小學(xué)和學(xué)校的知識(shí)能更好的銜接,我們重點(diǎn)應(yīng)用等式的性質(zhì)把特殊方程轉(zhuǎn)化為一般方程,然后依據(jù)一般方程的方式解決問(wèn)題。不足之處:在練習(xí)中出現(xiàn)個(gè)別學(xué)生不注意觀察方程是一般方程還是特殊方程,導(dǎo)致出錯(cuò)。再教設(shè)計(jì):重點(diǎn)強(qiáng)化特殊方程的特點(diǎn),讓學(xué)生在解方程的過(guò)程中首先要觀察方程的特點(diǎn),然后采取相應(yīng)的解決問(wèn)題的方式?!督夥匠獭方虒W(xué)反思4解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天**衡的道理解方程,學(xué)生在理解和運(yùn)用上都有一定的困難,而且本部分教學(xué)很是枯燥無(wú)味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:一、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天**衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目標(biāo),告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),它能使方程的左右兩邊相等,不信咱們?cè)囈辉??!庇纱艘鹆藢W(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個(gè)數(shù),“解方程”是一個(gè)過(guò)程,同時(shí)又為最后的檢驗(yàn)做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰(shuí)找的是寶石,誰(shuí)找的是石頭,用你自己的方式就可以驗(yàn)證。孩子們做的是津津有味,尋得異常開(kāi)心。在不知不覺(jué)學(xué)校會(huì)了本節(jié)課的知識(shí)。對(duì)于概念的理解也很扎扎實(shí)實(shí)。二、在練習(xí)題的安排上也做了心的安排,當(dāng)講授完利用天**衡的道理解方程后,馬進(jìn)步行了“填空練習(xí)”,這四個(gè)練習(xí)題的安排也是經(jīng)過(guò)心考慮的:第一個(gè)方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個(gè)方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個(gè)方程,又有所變化,但解方程的方式是沒(méi)有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對(duì)解方程掌握的還不錯(cuò)。本節(jié)課不足之處在于最后留的時(shí)間過(guò)少,檢驗(yàn)的格式?jīng)]有完整的交給孩子們??蓛?nèi)心沖突:檢驗(yàn)的目標(biāo)已經(jīng)達(dá)到了,必須要重視其格式嗎?《解方程》教學(xué)反思5學(xué)生從五年級(jí)就開(kāi)始接觸簡(jiǎn)易方程,經(jīng)歷一年多的學(xué)習(xí)對(duì)于方程有了一定的認(rèn)識(shí),然而為何要設(shè)單位“1”的.量為未知數(shù)這個(gè)問(wèn)題在列方程解決稍復(fù)雜的分?jǐn)?shù)實(shí)際問(wèn)題時(shí)就一直困擾著學(xué)生。列方程解決稍復(fù)雜的百分?jǐn)?shù)實(shí)際問(wèn)題是小學(xué)階段的最后一個(gè)有關(guān)方程學(xué)習(xí)的單元,因此有必要從本質(zhì)上去撥開(kāi)學(xué)生心中為何要設(shè)單位“1”的量為未知數(shù)的那團(tuán)云。正好借助這節(jié)課通過(guò)對(duì)比分析的方式幫助學(xué)生很好的解決這個(gè)困惑。案例描述:蘇教版數(shù)學(xué)六年級(jí)下冊(cè)教材教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的80%。美術(shù)組男生、女生各多少人?學(xué)生能很快根據(jù)題目條件進(jìn)行相關(guān)的找單位“1”分析數(shù)量關(guān)系的解題前期準(zhǔn)備,經(jīng)歷這這兩步后學(xué)生通過(guò)已有閱歷可以很快確定用方程的策略來(lái)解決這個(gè)問(wèn)題。在教學(xué)的過(guò)程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?學(xué)生在底下開(kāi)始異口同聲地回答設(shè)單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設(shè)美術(shù)組有男生X人,女生就有80%X人。那么根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36學(xué)生很自然地列出方程X+80%X=36。就在大家十分“得意”的時(shí)候,一個(gè)小男孩發(fā)表了自己不同的意見(jiàn):“也可以把女生人數(shù)設(shè)為X?!眲傞_(kāi)始很多同學(xué)覺(jué)得有點(diǎn)不可思議,以前做這類(lèi)問(wèn)題不都是將男生人數(shù)(單位“1”)設(shè)為未知數(shù)X的嗎?抓住這個(gè)千載難逢的機(jī)會(huì),我就讓他說(shuō)說(shuō)他是怎么想的。他是這么說(shuō)的:設(shè)女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽(tīng)完他彩的發(fā)言,大家恍然大悟,原來(lái)還可以這樣?仔細(xì)回想這個(gè)聰明男孩的問(wèn)題,原來(lái)數(shù)學(xué)真的需要?jiǎng)幽X。這個(gè)問(wèn)題在學(xué)習(xí)分?jǐn)?shù)除法之前教材是一直在回避的,到了這里我靈機(jī)一動(dòng)將題目改成:教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的2倍。美術(shù)組男生、女生各多少人?那你覺(jué)得這個(gè)問(wèn)題我們以前是怎么解決的?學(xué)生很自然的想到把一份數(shù)男生人數(shù)設(shè)為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設(shè)為X人呢?學(xué)生思考了一會(huì)列出:X+X÷2=36,這個(gè)方程沒(méi)有學(xué)習(xí)分?jǐn)?shù)除法之前學(xué)生是沒(méi)有辦法解出來(lái)的,可能這就是教材一直回避的重要原因吧。但是學(xué)生學(xué)習(xí)了分?jǐn)?shù)除法,理解了分?jǐn)?shù)和百分?jǐn)?shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的。經(jīng)過(guò)這兩個(gè)問(wèn)題的對(duì)比,學(xué)生明白了設(shè)未知量也是很重要的。課上到這里,并不是去推翻學(xué)生已有的閱歷,而是讓學(xué)生有這樣一種意識(shí):數(shù)學(xué)很多時(shí)候不是一種硬性規(guī)定,遇到這類(lèi)問(wèn)題只能設(shè)單位“1”的量為未知數(shù)。于是我順?biāo)浦圩寣W(xué)生比較了這兩個(gè)方程:X+80%X=36、X+X÷80%=36哪一個(gè)解起來(lái)不較容易?學(xué)生通過(guò)計(jì)算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?通過(guò)這樣的對(duì)比進(jìn)一步讓學(xué)生體驗(yàn)到了:設(shè)男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學(xué)生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個(gè)方程不是學(xué)生熟悉的類(lèi)型,是需要學(xué)生根據(jù)除法將它轉(zhuǎn)化為aX+bX=c,這一步轉(zhuǎn)化至關(guān)重要。經(jīng)過(guò)上述的兩次對(duì)比學(xué)生終于明白了:為什么在設(shè)未知量的時(shí)候一般要把單位“1”的量設(shè)為未知數(shù)了。有了這樣的深刻的體驗(yàn),學(xué)生解決這類(lèi)問(wèn)題就十分自然,心中的困惑可能就會(huì)煙消云散。《解方程》教學(xué)反思6本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天**衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來(lái)解,而是利用天*保持*衡的原理,也就是我們常說(shuō)的等式的基本性質(zhì)解方程。教學(xué)中我先利用課件演示了天*兩端同時(shí)加上或減去同樣的重量,同時(shí)擴(kuò)大或縮小相同倍數(shù),天*任然保持*衡,目標(biāo)是讓學(xué)生直觀感受天*保持*衡原理,為學(xué)生遷移類(lèi)推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個(gè)方塊=9個(gè)方塊,提問(wèn):“如果要稱(chēng)出x有多少塊,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天*兩端同時(shí)減去3個(gè)方塊,天*仍*衡,得到一個(gè)x相當(dāng)于6個(gè)方塊,從而得到x=6。你能把稱(chēng)的過(guò)程用算式表示出來(lái)嗎?大部分學(xué)生快速的寫(xiě)出了我想要的答案:x+3-3=9-3,于是我問(wèn):為什么方程兩邊要同時(shí)減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來(lái)了,“為了得到一個(gè)x得多少”,我又強(qiáng)調(diào)了一遍,我們的目標(biāo)是求一個(gè)x的多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天*保持*衡的道理,得到等式的基本性質(zhì):方程的兩邊同時(shí)加上或減去相同的數(shù),除以或乘上同一個(gè)不為0的數(shù),方程兩邊仍然相等。另外我還要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來(lái)求出方程中的未知數(shù)。在做練習(xí)時(shí)我發(fā)現(xiàn)大部分的學(xué)生在解方程的時(shí)候,還是運(yùn)用了加、減法各部分間的關(guān)系來(lái)求出方程中的未知數(shù),只有個(gè)別學(xué)生懂得運(yùn)用等式的性質(zhì)來(lái)求出方程中的未知數(shù)。在講授“解方程”定義概念時(shí),我主要從教材思想出發(fā),通過(guò)讓學(xué)生說(shuō)出采用各自不同的方式求解方程的過(guò)程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解?!督夥匠獭方虒W(xué)反思7本節(jié)課是在認(rèn)識(shí)用字母表示數(shù)的基礎(chǔ)進(jìn)步行教學(xué)的,用天*保持*衡的原理解方程教學(xué)利,也就是我們常說(shuō)的等式的基本性質(zhì)解方程。教學(xué)中我先利用板書(shū)演示了天*兩端同時(shí)加上或減去同樣的重量,同時(shí)擴(kuò)大或縮小相同倍數(shù),天*任然保持*衡,目標(biāo)是讓學(xué)生直觀感受天*保持*衡原理,為學(xué)生遷移類(lèi)推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個(gè)方塊=9個(gè)方塊,提問(wèn):“如果要稱(chēng)出x有多塊,怎么辦?”,引導(dǎo)學(xué)生思考,只要將天*兩端同時(shí)減去3個(gè)方塊,天*仍*衡,得到一個(gè)x相當(dāng)于6個(gè)方塊,從而得到x=6。你能把稱(chēng)的過(guò)程用算式表示出來(lái)嗎?大部分學(xué)生快速的寫(xiě)出了我想要的答案:x+3-3=9-3,于是我問(wèn):為什么方程兩邊要同時(shí)減去3,而不減去其它數(shù)呢?學(xué)生沉默,有學(xué)生說(shuō),“為了得到一個(gè)x得多少”,我又強(qiáng)調(diào)了一遍,我求一個(gè)x的多少,所以要把多余的3減去。接下來(lái)教學(xué)例2,同樣我利用天*原理幫助學(xué)生理解,在學(xué)生說(shuō)出要把天*兩端*均分成3分,得到每份是6的基礎(chǔ)上,我用板演演示了分的過(guò)程,讓學(xué)生把演示過(guò)程寫(xiě)出來(lái),從而解出方程。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天*保持*衡的道理,得到等式的基本性質(zhì):方程的兩邊同時(shí)加上或減去相同的數(shù),除以或乘上同一個(gè)不為0的數(shù),方程兩邊仍然相等。按理說(shuō),只要稍加類(lèi)推,學(xué)生應(yīng)該能掌握方程的解法。但接下來(lái)的練著大大出人意料,除了少數(shù)成績(jī)較好的學(xué)生能按照要求完成外,大部分幾乎不會(huì)做,甚至動(dòng)不了筆。問(wèn)題出在哪里?經(jīng)過(guò)認(rèn)真反思總結(jié)如下:一是從天*過(guò)渡到方程,類(lèi)推的過(guò)程學(xué)生理解不透,天*兩端同時(shí)減去3個(gè)方塊,就相當(dāng)于方程兩邊同時(shí)減去3,這個(gè)過(guò)程寫(xiě)下來(lái)時(shí),要強(qiáng)調(diào)左右兩邊原來(lái)狀態(tài)保持不變,要原樣寫(xiě)下來(lái),如果這樣的話就不會(huì)造成有的學(xué)生不會(huì)格式;二是對(duì)為什么要減去3討論不夠,雖然有學(xué)生回答上來(lái)了,我應(yīng)該能覺(jué)察出學(xué)生理解有困難,課件和天*能讓學(xué)生懂得方程兩邊要同時(shí)減去相同的數(shù),至于為什么這里要減去3卻還似懂非懂,如果當(dāng)時(shí)舉例說(shuō)明也許很有效果,比如:x-3=6,我們?cè)撛趺崔k呢?學(xué)生通過(guò)對(duì)比討論,就會(huì)發(fā)現(xiàn)我們要求出一個(gè)x是多少,就要根據(jù)方程的具體情況,若比x多余的就要減去,不足x的就要補(bǔ)足,這樣效果肯定好些。《解方程》教學(xué)反思8本節(jié)課的內(nèi)容包括兩個(gè)方面:一是理解“等式兩邊同時(shí)加上或減去同一個(gè)數(shù),所得結(jié)果仍然是等式”,二是應(yīng)用等式的性質(zhì)解只含有加法和減法運(yùn)算的簡(jiǎn)單方程。解方程是學(xué)生剛接觸的新知識(shí),學(xué)生原有的知識(shí)儲(chǔ)備與生活閱歷不足,因此教學(xué)中老師要時(shí)刻關(guān)注學(xué)生的學(xué)習(xí)的情況,引導(dǎo)學(xué)生經(jīng)歷將現(xiàn)實(shí)生活問(wèn)題加以數(shù)學(xué)化,引導(dǎo)學(xué)生通過(guò)操作、觀察、分析和比較,由具體的知識(shí)滲透到抽象的去理解等式的性質(zhì),并應(yīng)用等式的性質(zhì)來(lái)解方程。在這節(jié)課的教學(xué)中,應(yīng)讓學(xué)生理解并掌握等式的性質(zhì),這是為學(xué)生后續(xù)學(xué)習(xí)方程打下較扎扎實(shí)實(shí)的基礎(chǔ)。一、讓學(xué)生通過(guò)動(dòng)手、操作、觀察中去發(fā)現(xiàn)等式的性質(zhì)老師先出示天*,并在天*兩邊各放一個(gè)20g的砝碼,“你能用式子表示出兩邊的關(guān)系?”生寫(xiě)出20=20;教師在天*的一邊增加一個(gè)10g砝碼,“這時(shí)的關(guān)系怎么表示?”生寫(xiě)出20+10>20,“這時(shí)天*的兩邊不相等,怎樣才能讓天*兩邊相等?”生交流得出在天*的另一邊增加同樣重量的砝碼;然后依次出現(xiàn)后續(xù)的三幅天*圖,學(xué)生觀察,教師板書(shū),并組織學(xué)生小組討論交流:“你有什么發(fā)現(xiàn)嗎?”通過(guò)全班交流,在交流中教師應(yīng)逐步提示,因?yàn)檫@是一個(gè)全新的知識(shí),得出等式的性質(zhì)。最后,讓學(xué)生自己寫(xiě)幾個(gè)等式看一看。通過(guò)具體的操作為學(xué)生探究問(wèn)題,尋找結(jié)論提供了真實(shí)的情境,富有啟發(fā)性、引領(lǐng)性,讓學(xué)生經(jīng)歷了解決問(wèn)題的過(guò)程,并在問(wèn)題的解決中發(fā)現(xiàn)并掌握了知識(shí)。二、讓學(xué)生運(yùn)用等式的性質(zhì)解方程引入了等式的性質(zhì),其目標(biāo)就是讓學(xué)生應(yīng)用這一性質(zhì)去解方程,第一次學(xué)習(xí)解方程,學(xué)生心理上難免會(huì)有些準(zhǔn)備不足,為了幫助學(xué)生應(yīng)用等式的性質(zhì)解方程,課前布置了學(xué)生預(yù)習(xí),課中我先讓學(xué)生嘗試練習(xí),但巡視中發(fā)現(xiàn)學(xué)生沒(méi)有根本理解,我就利用天*所顯示的數(shù)量關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)“在方程的兩邊都減去10,使方程的左邊只剩下X”,并詳細(xì)講解解方程的書(shū)寫(xiě)格式,包括檢驗(yàn)。通過(guò)這樣有步驟的練習(xí),幫助學(xué)生逐漸掌握解方程的方式。然后讓學(xué)再次通過(guò)修正,試一試,鞏固解方程的知識(shí)。本節(jié)課達(dá)到了預(yù)期的效果。三、遺憾的是,由于星期一集體活動(dòng)的沖突,導(dǎo)致今日的上課時(shí)間30分鐘都不到,因此學(xué)生的交流顯得不充分,教師的重點(diǎn)講解顯得不到位《等式的性質(zhì)2和解方程》教學(xué)反思今日所教的《等式的性質(zhì)2和解方程》是在《等式的性質(zhì)1》的基礎(chǔ)進(jìn)步行教學(xué)的,使學(xué)生探究并理解“等式兩邊同時(shí)乘或除以同一個(gè)不等于0的數(shù),所得結(jié)果仍然是等式”,學(xué)會(huì)應(yīng)用等式的性質(zhì)解只含有乘法或除法運(yùn)算的簡(jiǎn)單方程。通過(guò)對(duì)教參的學(xué)習(xí),我認(rèn)為本課應(yīng)該解決好以下幾個(gè)問(wèn)題:1.例5和例3的結(jié)構(gòu)基本相同,也是從天*圖表示的數(shù)量間的相等關(guān)系入手,應(yīng)引導(dǎo)學(xué)生在觀察、分析、比較、抽象和概括等活動(dòng)中,自主探究并理解等式的另一條性質(zhì)。2.結(jié)合現(xiàn)實(shí)情境引導(dǎo)學(xué)生自主探究例6的解法。由于學(xué)生已經(jīng)初步掌握了解方程的一般步驟,教學(xué)過(guò)程中可以讓學(xué)生通過(guò)自主嘗試完成,再以討論的形式引導(dǎo)學(xué)生學(xué)會(huì)利用并理解相關(guān)條件尋找等量關(guān)系,再根據(jù)等量關(guān)系列方程。3.應(yīng)培養(yǎng)學(xué)生運(yùn)用新知識(shí)解決方程的能力。通過(guò)學(xué)生嘗試,交流,教師適當(dāng)?shù)脑u(píng)析,使學(xué)生明白在解方程的過(guò)程中,都應(yīng)利用等式的性質(zhì)使方程的左邊只剩下x。4.培養(yǎng)學(xué)生自覺(jué)檢驗(yàn)的意識(shí)。課中圍繞這些想法展開(kāi),效果不錯(cuò),就是有點(diǎn)前緊后松?!督夥匠獭方虒W(xué)反思9學(xué)生從五年級(jí)就開(kāi)始接觸簡(jiǎn)易方程,經(jīng)歷一年多的學(xué)習(xí)對(duì)于方程有了一定的認(rèn)識(shí),然而為何要設(shè)單位“1”的量為未知數(shù)這個(gè)問(wèn)題在列方程解決稍復(fù)雜的分?jǐn)?shù)實(shí)際問(wèn)題時(shí)就一直困擾著學(xué)生。列方程解決稍復(fù)雜的百分?jǐn)?shù)實(shí)際問(wèn)題是小學(xué)階段的最后一個(gè)有關(guān)方程學(xué)習(xí)的單元,因此有必要從本質(zhì)上去撥開(kāi)學(xué)生心中為何要設(shè)單位“1”的量為未知數(shù)的那團(tuán)云。正好借助這節(jié)課通過(guò)對(duì)比分析的方式幫助學(xué)生很好的解決這個(gè)困惑。案例描述:蘇教版數(shù)學(xué)六年級(jí)下冊(cè)教材教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的80%。美術(shù)組男生、女生各多少人?學(xué)生能很快根據(jù)題目條件進(jìn)行相關(guān)的找單位“1”分析數(shù)量關(guān)系的解題前期準(zhǔn)備,經(jīng)歷這這兩步后學(xué)生通過(guò)已有閱歷可以很快確定用方程的策略來(lái)解決這個(gè)問(wèn)題。在教學(xué)的過(guò)程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?學(xué)生在底下開(kāi)始異口同聲地回答設(shè)單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設(shè)美術(shù)組有男生X人,女生就有80%X人。那么根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36學(xué)生很自然地列出方程X+80%X=36。就在大家十分“得意”的時(shí)候,一個(gè)小男孩發(fā)表了自己不同的意見(jiàn):“也可以把女生人數(shù)設(shè)為X?!眲傞_(kāi)始很多同學(xué)覺(jué)得有點(diǎn)不可思議,以前做這類(lèi)問(wèn)題不都是將男生人數(shù)(單位“1”)設(shè)為未知數(shù)X的嗎?抓住這個(gè)千載難逢的機(jī)會(huì),我就讓他說(shuō)說(shuō)他是怎么想的。他是這么說(shuō)的:設(shè)女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽(tīng)完他彩的發(fā)言,大家恍然大悟,原來(lái)還可以這樣?仔細(xì)回想這個(gè)聰明男孩的問(wèn)題,原來(lái)數(shù)學(xué)真的需要?jiǎng)幽X。這個(gè)問(wèn)題在學(xué)習(xí)分?jǐn)?shù)除法之前教材是一直在回避的,到了這里我靈機(jī)一動(dòng)將題目改成:教材例5:朝陽(yáng)小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的2倍。美術(shù)組男生、女生各多少人?那你覺(jué)得這個(gè)問(wèn)題我們以前是怎么解決的?學(xué)生很自然的想到把一份數(shù)男生人數(shù)設(shè)為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設(shè)為X人呢?學(xué)生思考了一會(huì)列出:X+X÷2=36,這個(gè)方程沒(méi)有學(xué)習(xí)分?jǐn)?shù)除法之前學(xué)生是沒(méi)有辦法解出來(lái)的,可能這就是教材一直回避的重要原因吧。但是學(xué)生學(xué)習(xí)了分?jǐn)?shù)除法,理解了分?jǐn)?shù)和百分?jǐn)?shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的。經(jīng)過(guò)這兩個(gè)問(wèn)題的對(duì)比,學(xué)生明白了設(shè)未知量也是很重要的。課上到這里,并不是去推翻學(xué)生已有的閱歷,而是讓學(xué)生有這樣一種意識(shí):數(shù)學(xué)很多時(shí)候不是一種硬性規(guī)定,遇到這類(lèi)問(wèn)題只能設(shè)單位“1”的量為未知數(shù)。于是我順?biāo)浦圩寣W(xué)生比較了這兩個(gè)方程:X+80%X=36、X+X÷80%=36哪一個(gè)解起來(lái)不較容易?學(xué)生通過(guò)計(jì)算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺(jué)得怎樣設(shè)未知數(shù)比較合理呢?通過(guò)這樣的對(duì)比進(jìn)一步讓學(xué)生體驗(yàn)到了:設(shè)男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論