版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.1
集合的概念通過(guò)學(xué)習(xí)本節(jié)內(nèi)容,能從具體到抽象理解相關(guān)數(shù)學(xué)概念,逐步形成數(shù)學(xué)抽象的數(shù)
學(xué)素養(yǎng).學(xué)習(xí)時(shí)還應(yīng)注意以下幾點(diǎn):1.通過(guò)實(shí)例,了解集合的含義,理解集合與元素之間的關(guān)系.2.針對(duì)具體問(wèn)題,能在自然語(yǔ)言和圖形語(yǔ)言的基礎(chǔ)上,用符號(hào)語(yǔ)言刻畫(huà)集合.3.在具體情境中,掌握集合中元素的三個(gè)特性.1.元素:一般地,把①
研究對(duì)象
統(tǒng)稱(chēng)為元素,常用小寫(xiě)拉丁字母a,b,c,…表示.2.集合:把一些元素組成的②總體
叫做集合(簡(jiǎn)稱(chēng)為集),常用大寫(xiě)拉丁字母A,
B,C,…表示.3.集合相等:構(gòu)成兩個(gè)集合的元素是一樣的.4.集合中元素的特性:確定性、互異性、無(wú)序性.1|元素與集合的概念2|元素與集合的關(guān)系關(guān)系概念記法讀法屬于如果a是集合A的元素,就說(shuō)a屬于集合Aa③∈
Aa屬于集合A不屬于如果a不是集合A中的元素,就說(shuō)a不屬于集合Aa④
?
Aa不屬于集合A3|常用數(shù)集及其記法常用的數(shù)集自然數(shù)集正整數(shù)集整數(shù)集有理數(shù)集實(shí)數(shù)集記法NN*或N+ZQR1.列舉法把集合的所有元素一一列舉出來(lái),并用花括號(hào)“{}”括起來(lái)表示集合的方法叫做
列舉法.2.描述法(1)定義:一般地,設(shè)A是一個(gè)集合,我們把集合A中所有具有⑤共同特征
P(x)的
元素x所組成的集合表示為{x∈A|P(x)},這種表示集合的方法稱(chēng)為描述法.(2)寫(xiě)法:在花括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再
畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的⑥共同特征
.4|集合的表示方法根據(jù)集合中元素個(gè)數(shù)的多少可將集合分為有限集和無(wú)限集.
有限集:集合中元素的個(gè)數(shù)是有限的.
無(wú)限集:集合中元素的個(gè)數(shù)是無(wú)限的.5|集合的分類(lèi)1.中央電視臺(tái)著名節(jié)目主持人可以組成一個(gè)集合.
(
?)2.元素a,b,c與元素c,b,a組成的集合相等.
(
√)3.0∈N,但0?N*.
(
√)4.數(shù)1,0,5,
,
組成的集合中有5個(gè)元素.
(
?)5.集合{(1,2)}中的元素是1和2.
(
?)提示:集合{(1,2)}中的元素是(1,2).6.集合{x∈R|x>0}與{x∈Q|x>0}相等.
(
?)提示:代表元素的取值范圍不一致,前者x∈R,后者x∈Q,所以?xún)蓚€(gè)集合不相等.判斷正誤,正確的畫(huà)“√”,錯(cuò)誤的畫(huà)“?”.1|集合中元素的特性(1)確定性——對(duì)于一個(gè)給定的集合,它的元素必須是確定的.也就是說(shuō),如果給定
一個(gè)集合,那么一個(gè)元素在或不在這個(gè)集合中就確定了.(2)互異性——對(duì)于一個(gè)給定的集合,它的元素一定是互不相同的.也就是說(shuō),集合
中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算為一個(gè)
元素.(3)無(wú)序性——對(duì)于一個(gè)給定的集合,它的元素并無(wú)先后順序,即任何兩個(gè)元素都
是可以交換順序的.
(2020江蘇南通高一第一次質(zhì)量檢測(cè))若1∈{x,x2},則x=
(
B)A.1
B.-1
C.0或1
D.0或1或-1解析
若1∈{x,x2},則必有x=1或x2=1.①當(dāng)x=1時(shí),x2=1,不符合集合中元素的互異性,舍去;②當(dāng)x2=1時(shí),解得x=-1或x=1(舍去),當(dāng)x=-1時(shí),x2=1,符合題意.綜上可得,x=-1.故選B.2|集合的表示給出下列三個(gè)集合:①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}.問(wèn)題1.它們是不是相同的集合?提示:由于三個(gè)集合的代表元素互不相同,因此它們是互不相同的集合.2.它們各自的含義是什么?提示:集合A表示數(shù)集R;集合B表示數(shù)集{y|y≥1};集合C表示坐標(biāo)平面內(nèi)滿(mǎn)足y=x2+
1的點(diǎn)(x,y)構(gòu)成的集合.列舉法和描述法各有優(yōu)缺點(diǎn),應(yīng)根據(jù)具體問(wèn)題進(jìn)行選擇,一般遵循最簡(jiǎn)原則.當(dāng)集
合中元素較多或有無(wú)限個(gè)時(shí),不宜采用列舉法.1.用列舉法表示集合時(shí)需注意:(1)元素個(gè)數(shù)少且有限時(shí),可全部列舉出來(lái),如{1,2,3,4};(2)元素個(gè)數(shù)多且有限時(shí),若可以按某種規(guī)律排列,則可以列舉部分元素,中間用省
略號(hào)表示,如“從1到1000的所有自然數(shù)”可以表示為{1,2,3,…,1000};(3)元素個(gè)數(shù)無(wú)限但有規(guī)律時(shí),也可以用省略號(hào)列舉,如自然數(shù)集N可以表示為{0,1,
2,3,…}.2.用描述法表示集合時(shí)應(yīng)注意以下幾點(diǎn):(1)寫(xiě)清楚集合中的代表元素,如數(shù)或點(diǎn)等;(2)說(shuō)明該集合中元素所具有的共同特征;(3)不能出現(xiàn)未經(jīng)說(shuō)明的字母;(4)所有描述的內(nèi)容都要寫(xiě)在花括號(hào)內(nèi),用于描述內(nèi)容的語(yǔ)言要力求簡(jiǎn)潔、準(zhǔn)確;(5)“{}”有“所有”“全體”的含義,因此自然數(shù)集可以表示為{x|x為自然數(shù)}
或N,但不能表示為{x|x為所有自然數(shù)}或{N}.用適當(dāng)?shù)姆椒ū硎鞠铝屑?(1)被3除余2的整數(shù)組成的集合;(2)方程(x+1)(x2-2)=0的解集;(3)直線(xiàn)y=x-1,y=-x+1的交點(diǎn)組成的集合;(4)平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合;(5)已知集合A=
,用列舉法表示集合A.思路點(diǎn)撥(1)類(lèi)比奇數(shù)集{x|x=2k+1,k∈Z}的表示.(2)求出方程的解后用列舉法表示.(3)聯(lián)立
直線(xiàn)方程,求出交點(diǎn)后用集合表示.(4)結(jié)合平面直角坐標(biāo)系第二象限內(nèi)點(diǎn)的坐標(biāo)
的符號(hào)特征表示.(5)結(jié)合集合A中元素滿(mǎn)足的共同特征寫(xiě)出
的可能取值,進(jìn)而用列舉法表示.解析
(1)被3除余2的整數(shù)可以表示為3k+2,k∈Z,用集合表示為{x|x=3k+2,k∈Z}.(2)解方程(x+1)(x2-2)=0,得x=-1或x=±
,用集合表示為{-1,-
,
}.(3)聯(lián)立
解得
故兩直線(xiàn)的交點(diǎn)為(1,0),用集合表示為{(1,0)}.(4)用有序?qū)崝?shù)對(duì)(x,y)作為代表元素,用描述法表示此集合為{(x,y)|x<0,且y>0}.(5)∵
∈N,則8-x可取的值有1,2,4,8,16,∴x的可能值有7,6,4,0,-8,又x∈N,∴x可取7,6,4,0,∴
可取2,4,8,16,∴A={2,4,8,16}.3|集合中參數(shù)問(wèn)題的解法求解含參數(shù)的集合問(wèn)題時(shí),若參數(shù)的取值對(duì)解題有影響,則需對(duì)參數(shù)進(jìn)行分類(lèi)討論.1.對(duì)參數(shù)進(jìn)行準(zhǔn)確的邏輯劃分.如在研究方程ax+b=0時(shí),若a≠0,則此方程是一元
一次方程,按一元一次方程求解即可;若a=0,則此方程不是一元一次方程,此時(shí)看b
是不是0.2.求參數(shù)值的問(wèn)題,先利用條件列出等式,再解方程(組)求值,最后用集合中元素的
互異性檢驗(yàn)參數(shù)的值是否符合題意.解題時(shí)要注意:(1)列等式時(shí)要考慮到元素的無(wú)序性,元素的無(wú)序性主要體現(xiàn)在:①給出的對(duì)象屬
于某集合,則它可能等于集合中的任一元素;②給出的兩集合相等,則其中的元素
不一定按順序?qū)?yīng)相等.(2)元素的互異性主要體現(xiàn)在求出參數(shù)后要代入檢驗(yàn),同一集合中的元素要互不相等.3.求參數(shù)的取值范圍問(wèn)題先利用條件列出不等式(組),再解不等式(組)得到參數(shù)的
取值范圍,最后用集合中元素的互異性檢驗(yàn)參數(shù)的取值范圍是否符合題意.已知集合A={x|ax2-3x+2=0,x∈R}.(1)若集合A中只有一個(gè)元素,求實(shí)數(shù)a的值,并寫(xiě)出該元素;(2)若集合A中至多有一個(gè)元素,求實(shí)數(shù)a的取值范圍.思路點(diǎn)撥先考慮最高次項(xiàng)系數(shù)是不是0,即先判斷該方程是一元一次方程,還是一元二次方
程,若為一元一次方程,直接求解即可;若為一元二次方程,則需求判別式,從而確定
根的個(gè)數(shù).解析
(1)若a=0,則方程為一元一次方程,它有唯一解x=
,符合題意;若a≠0,因?yàn)锳中只有一個(gè)元素,所以方程有兩個(gè)相等的實(shí)數(shù)根.由Δ=(-3)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鋁扣板行業(yè)規(guī)范與質(zhì)量監(jiān)督合同4篇
- 二零二五年度智能建筑成本預(yù)算與合同監(jiān)管協(xié)議4篇
- 二零二五年網(wǎng)絡(luò)信息安全無(wú)限連帶擔(dān)保合同2篇
- 二零二五年度綠色環(huán)保建材進(jìn)口合同樣本4篇
- 二零二五年度知識(shí)產(chǎn)權(quán)代理轉(zhuǎn)讓合同(專(zhuān)利版權(quán))4篇
- 二零二五年度高速公路收費(fèi)站車(chē)位劃線(xiàn)與交通指揮合同4篇
- 2025年度大學(xué)生畢業(yè)論文保密協(xié)議與專(zhuān)利申請(qǐng)合同4篇
- 2025年度國(guó)際貿(mào)易知識(shí)產(chǎn)權(quán)保護(hù)與知識(shí)傳播合同4篇
- 個(gè)性化2024離婚合同書(shū)樣例一
- 二零二五年度門(mén)窗工程節(jié)能改造設(shè)計(jì)方案合同3篇
- DB32T 4880-2024民用建筑碳排放計(jì)算標(biāo)準(zhǔn)
- 銀行2025年紀(jì)檢工作計(jì)劃
- 注射泵管理規(guī)范及工作原理
- 國(guó)潮風(fēng)中國(guó)風(fēng)2025蛇年大吉蛇年模板
- 故障診斷技術(shù)的國(guó)內(nèi)外發(fā)展現(xiàn)狀
- 2024年發(fā)電廠(chǎng)交接班管理制度(二篇)
- 農(nóng)機(jī)維修市場(chǎng)前景分析
- 匯款賬戶(hù)變更協(xié)議
- 蝦皮shopee新手賣(mài)家考試題庫(kù)及答案
- 四川省宜賓市2023-2024學(xué)年八年級(jí)上學(xué)期期末義務(wù)教育階段教學(xué)質(zhì)量監(jiān)測(cè)英語(yǔ)試題
- 價(jià)值醫(yī)療的概念 實(shí)踐及其實(shí)現(xiàn)路徑
評(píng)論
0/150
提交評(píng)論