人教數(shù)學A版《平面向量的實際背景及基本概念》同步練習_第1頁
人教數(shù)學A版《平面向量的實際背景及基本概念》同步練習_第2頁
人教數(shù)學A版《平面向量的實際背景及基本概念》同步練習_第3頁
人教數(shù)學A版《平面向量的實際背景及基本概念》同步練習_第4頁
人教數(shù)學A版《平面向量的實際背景及基本概念》同步練習_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

《平面向量的實際背景及基本概念》同步練習一、選擇題1.如圖所示,點O是正六邊形ABCDEF的中心,則以圖中點A、B、C、D、E、F、O中的任意一點為始點,與始點不同的另一點為終點的所有向量中,除向量eq\o(OA,\s\up6(→))外,與向量eq\o(OA,\s\up6(→))共線的向量共有()A.6個 B.7個C.8個 D.9個[答案]D[解析]與向量eq\o(OA,\s\up6(→))共線的向量有:eq\o(OD,\s\up6(→)),eq\o(DO,\s\up6(→)),eq\o(AD,\s\up6(→)),eq\o(DA,\s\up6(→)),eq\o(EF,\s\up6(→)),eq\o(FE,\s\up6(→)),eq\o(BC,\s\up6(→)),eq\o(CB,\s\up6(→)),eq\o(AO,\s\up6(→)),故共有9個.2.在下列判斷中,正確的是()①長度為0的向量都是零向量;②零向量的方向都是相同的;③單位向量的長度都相等;④單位向量都是同方向;⑤任意向量與零向量都共線.A.①②③ B.②③④C.①②⑤ D.①③⑤[答案]D[解析]由定義知①正確,②由于兩個零向量是平行的,但不能確定是否同向,也不能確定是哪個具體方向,故不正確.顯然,③、⑤正確,④不正確,所以答案是D.3.若|eq\o(AB,\s\up6(→))|=|eq\o(AD,\s\up6(→))|且eq\o(BA,\s\up6(→))=eq\o(CD,\s\up6(→)),則四邊形ABCD的形狀為()A.平行四邊形 B.矩形C.菱形 D.等腰梯形[答案]C[解析]∵eq\o(BA,\s\up6(→))=eq\o(CD,\s\up6(→)),∴四邊形ABCD為平行四邊形,又∵|eq\o(AB,\s\up6(→))|=|eq\o(AD,\s\up6(→))|,∴四邊形為菱形.4.已知圓心為O的⊙O上三點A、B、C,則向量eq\o(BO,\s\up6(→))、eq\o(OC,\s\up6(→))、eq\o(OA,\s\up6(→))是()A.有相同起點的相等向量B.長度為1的向量C.模相等的向量D.相等的向量[答案]C[解析]圓的半徑r=|eq\o(BO,\s\up6(→))|=|eq\o(OC,\s\up6(→))|=|eq\o(OA,\s\up6(→))|不一定為1,故選C.5.下列關于向量的結論:(1)若|a|=|b|,則a=b或a=-b;(2)向量a與b平行,則a與b的方向相同或相反;(3)起點不同,但方向相同且模相等的向量是相等向量;(4)若向量a與b同向,且|a|>|b|,則a>b.其中正確的序號為()A.(1)(2) B.(2)(3)C.(4) D.(3)[答案]D[解析](1)中只知|a|=|b|,a與b的方向不知,故(1)不對;不要讓實數(shù)的性質(zhì)|x|=a,則x=±a,錯誤遷移到向量中來.(2)沒告訴是非零向量,故(2)不對,因為零向量的方向是任意的.(3)正確.對于任一個向量,只要不改變其大小和方向,是可以任意移動的,因此相等向量可以起點不同.(4)向量與數(shù)不同,向量不能比較大?。?.四邊形ABCD、CEFG、CGHD都是全等的菱形,HE與CG相交于點M,則下列關系不一定成立的是()A.|eq\o(AB,\s\up6(→))|=|eq\o(EF,\s\up6(→))|\o(AB,\s\up6(→))與eq\o(FH,\s\up6(→))共線\o(BD,\s\up6(→))與eq\o(EH,\s\up6(→))共線\o(DC,\s\up6(→))與eq\o(EC,\s\up6(→))共線[答案]C[解析]∵三個四邊形都是菱形,∴|eq\o(AB,\s\up6(→))|=|eq\o(EF,\s\up6(→))|,AB∥CD∥FH,故eq\o(AB,\s\up6(→))與eq\o(FH,\s\up6(→))共線,又三點D、C、E共線,∴eq\o(DC,\s\up6(→))與eq\o(EC,\s\up6(→))共線,故A、B、D都正確.當ABCD與其它兩個菱形不共面時,BD與EH異面.7.下列命題正確的是()A.向量a與b共線,向量b與c共線,則向量a與c共線B.向量a與b不共線,向量b與c不共線,則向量a與c不共線C.向量eq\o(AB,\s\up6(→))與eq\o(CD,\s\up6(→))是共線向量,則A、B、C、D四點一定共線D.向量a與b不共線,則a與b都是非零向量[答案]D[解析]當b=0時,A不對;如圖a=eq\o(AB,\s\up6(→)),c=eq\o(BC,\s\up6(→)),b與a,b與c均不共線,但a與c共線,∴B錯.在?ABCD中,eq\o(AB,\s\up6(→))與eq\o(CD,\s\up6(→))共線,但四點A、B、C、D不共線,∴C錯;若a與b有一個為零向量,則a與b一定共線,∴a,b不共線時,一定有a與b都是非零向量,故D正確.8.下列說法正確的是()①向量eq\o(AB,\s\up6(→))與eq\o(CD,\s\up6(→))是平行向量,則A、B、C、D四點一定不在同一直線上②向量a與b平行,且|a|=|b|≠0,則a+b=0或a-b=0③向量eq\o(AB,\s\up6(→))的長度與向量eq\o(BA,\s\up6(→))的長度相等④單位向量都相等A.①③ B.②④C.①④ D.②③[答案]D[解析]對于①,向量平行時,表示向量的有向線段所在直線可以是重合的,故①錯.對于②,由于|a|=|b|≠0,∴a,b都是非零向量,∵a∥b,∴a與b方向相同或相反,∴a+b=0或a-b=0.對于③,向量eq\o(AB,\s\up6(→))與向量eq\o(BA,\s\up6(→))方向相反,但長度相等.對于④,單位向量不僅僅長度為1,還有方向,而向量相等需要長度相等而且方向相同.選D.二、填空題9.如圖ABCD是菱形,則在向量eq\o(AB,\s\up6(→))、eq\o(BC,\s\up6(→))、eq\o(CD,\s\up6(→))、eq\o(DA,\s\up6(→))、eq\o(DC,\s\up6(→))和eq\o(AD,\s\up6(→))中,相等的有________對.[答案]2[解析]eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),eq\o(BC,\s\up6(→))=eq\o(AD,\s\up6(→)).其余不等.10.給出下列各命題:(1)零向量沒有方向;(2)若|a|=|b|,則a=b;(3)單位向量都相等;(4)向量就是有向線段;(5)兩相等向量若其起點相同,則終點也相同;(6)若a=b,b=c,則a=c;(7)若a∥b,b∥c,則a∥c;(8)若四邊形ABCD是平行四邊形,則eq\o(AB,\s\up6(→))=eq\o(CD,\s\up6(→)),eq\o(BC,\s\up6(→))=eq\o(DA,\s\up6(→)).其中正確命題的序號是________.[答案](5)(6)[解析](1)該命題不正確,零向量不是沒有方向,只是方向不定;(2)該命題不正確,|a|=|b|只是說明這兩向量的模相等,但其方向未必相同;(3)該命題不正確,單位向量只是模為單位長度1,而對方向沒要求;(4)該命題不正確,有向線段只是向量的一種表示形式,但不能把兩者等同起來;(5)該命題正確,因兩相等向量的模相等,方向相同,故當它們的起點相同時,其終點必重合;(6)該命題正確.由向量相等的定義知,a與b的模相等,b與c的模相等,從而a與c的模相等;又a與b的方向相同,b與c的方向相同,從而a與c的方向也必相同,故a=c;(7)該命題不正確.因若b=0,則對兩不共線的向量a與c,也有a∥0,0∥c,但a∥\c;(8)該命題不正確.如圖所示,顯然有eq\o(AB,\s\up6(→))≠eq\o(CD,\s\up6(→)),eq\o(BC,\s\up6(→))≠eq\o(DA,\s\up6(→)).11.已知A、B、C是不共線的三點,向量m與向量eq\o(AB,\s\up6(→))是平行向量,與eq\o(BC,\s\up6(→))是共線向量,則m=________.[答案]0[解析]∵A、B、C不共線,∴eq\o(AB,\s\up6(→))與eq\o(BC,\s\up6(→))不共線,又∵m與eq\o(AB,\s\up6(→))、eq\o(BC,\s\up6(→))都共線,∴m=0.三、解答題12.如圖所示,點O為正方形ABCD對角線的交點,四邊形OAED,OCFB都是正方形.在圖中所示的向量中:(1)分別寫出與eq\o(AO,\s\up6(→)),eq\o(BO,\s\up6(→))相等的向量;(2)寫出與eq\o(AO,\s\up6(→))共線的向量;(3)寫出與eq\o(AO,\s\up6(→))的模相等的向量;(4)向量eq\o(AO,\s\up6(→))與eq\o(CO,\s\up6(→))是否相等?[解析](1)eq\o(AO,\s\up6(→))=eq\o(BF,\s\up6(→)),eq\o(BO,\s\up6(→))=eq\o(AE,\s\up6(→));(2)與eq\o(AO,\s\up6(→))共線的向量為:eq\o(BF,\s\up6(→)),eq\o(CO,\s\up6(→)),eq\o(DE,\s\up6(→));(3)|eq\o(AO,\s\up6(→))|=|eq\o(CO,\s\up6(→))|=|eq\o(DO,\s\up6(→))|=|eq\o(BO,\s\up6(→))|=|eq\o(BF,\s\up6(→))|=|eq\o(CF,\s\up6(→))|=|eq\o(AE,\s\up6(→))|=|eq\o(DE,\s\up6(→))|;(4)不相等.13.如圖所示,四邊形ABCD中,eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),N、M是AD、BC上的點,且eq\o(CN,\s\up6(→))=eq\o(MA,\s\up6(→)).求證:eq\o(DN,\s\up6(→))=eq\o(MB,\s\up6(→)).[解析]∵eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),∴|eq\o(AB,\s\up6(→))|=|eq\o(DC,\s\up6(→))|且AB∥CD.∴四邊形ABCD是平行四邊形.∴|eq\o(DA,\s\up6(→))|=|eq\o(CB,\s\up6(→))|,且DA∥CB.又∵eq\o(DA,\s\up6(→))與eq\o(CB,\s\up6(→))的方向相同,∴eq\o(CB,\s\up6(→))=eq\o(DA,\s\up6(→)).同理可證:四邊形CNAM是平行四邊形,∴eq\o(CM,\s\up6(→))=eq\o(NA,\s\up6(→)).∵|eq\o(CB,\s\up6(→))|=|eq\o(DA,\s\up6(→))|,|eq\o(CM,\s\up6(→))|=|eq\o(NA,\s\up6(→))|,∴|eq\o(MB,\s\up6(→))|=|eq\o(DN,\s\up6(→))|,DN∥MB,即eq\o(DN,\s\up6(→))與eq\o(MB,\s\up6(→))的模相等且方向相同.∴eq\o(DN,\s\up6(→))=eq\o(MB,\s\up6(→)).14.如圖所示,4×3的矩形(每個小方格都是單位正方形),在起點和終點都在小方格的頂點處的向量中,試問:(1)與eq\o(AB,\s\up6(→))相等的向量共有幾個;(2)與eq\o(AB,\s\up6(→))平行且模為eq\r(2)的向量共有幾個?(3)與eq\o(AB,\s\up6(→))方向相同且模為3eq\r(2)的向量共有幾個?[分析]非零向量平行(共線)包括兩種情況:一種是方向相同,另一種是方向相反.[解析](1)與向量eq\o(AB,\s\up6(→))相等的向量共有5個(不包括eq\o(AB,\s\up6(→))本身).(2)與向量eq\o(AB,\s\up6(→))平行且模為eq\r(2)的向量共有24個.(3)與向量eq\o(AB,\s\up6(→))方向相同且模為3eq\r(2)的向量共有2個.15.如圖所示,已知?ABCD,?AOBE,?ACFB,?ACGD,?ACDH,點O是?ABCD的對角線交點,且eq\o(OA,\s\up6(→))=a,eq\o(OD,\s\up6(→))=b,eq\o(AD,\s\up6(→))=c.(1)寫出圖中與a相等的向量;(2)寫出圖中與b相等的向量;(3)寫出圖中與c相等的向量.[解析](1)在?OAEB中,eq\o(OA,\s\up6(→))=eq\o(BE,\s\up6(→))=a;在?ABCD中,eq\o(CO,\s\up6(→

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論