版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精學必求其心得,業(yè)必貴于專精10。7離散型隨機變量及其分布列[知識梳理]1.離散型隨機變量隨著試驗結果變化而變化的變量稱為隨機變量,常用字母X,Y,ξ,η,…表示.所有取值可以一一列出的隨機變量,稱為離散型隨機變量.2.離散型隨機變量的分布列及性質(1)一般地,若離散型隨機變量X可能取的不同值為x1,x2,…,xi,…,xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,則表Xx1x2…xi…xnPp1p2…pi…pn稱為離散型隨機變量X的概率分布列,簡稱為X的分布列,有時為了表達簡單,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.(2)離散型隨機變量的分布列的性質①pi≥0(i=1,2,…,n);②eq\a\vs4\al(\i\su(i=1,n,p)i=1)。3.常見離散型隨機變量的分布列(1)兩點分布若隨機變量X服從兩點分布,即其分布列為X01P1-pp,其中p=P(X=1)稱為成功概率.(2)超幾何分布在含有M件次品的N件產品中,任取n件,其中恰有X件次品,則P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*。X01…mPeq\f(C\o\al(0,M)C\o\al(n-0,N-M),C\o\al(n,N))eq\f(C\o\al(1,M)C\o\al(n-1,N-M),C\o\al(n,N))…eq\f(C\o\al(m,M)C\o\al(n-m,N-M),C\o\al(n,N))如果隨機變量X的分布列具有上表的形式,則稱隨機變量X服從超幾何分布.[診斷自測]1.概念思辨(1)隨機試驗的結果與隨機變量是一種映射關系,即每一個試驗結果都有唯一的隨機變量的值與之對應。()(2)離散型隨機變量的各個可能值表示的事件是彼此互斥的.()(3)離散型隨機變量在某一范圍內取值的概率等于它取這個范圍內各個值的概率之和.()(4)若隨機變量X的分布列由下表給出,X25P0。30。7則它服從兩點分布.()答案(1)√(2)√(3)√(4)×2.教材衍化(1)(選修A2-3P49A組T5)設離散型隨機變量ξξ1234Peq\f(1,10)eq\f(2,10)eq\f(3,10)eq\f(4,10)則Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<ξ<\f(5,2)))=________.答案eq\f(3,10)解析Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<ξ〈\f(5,2)))=P(ξ=1)+P(ξ=2)=eq\f(1,10)+eq\f(2,10)=eq\f(3,10)。(2)(選修A2-3P49T3)從一副52張(去掉兩張王)的撲克牌中任取5張,其中黑桃張數(shù)的概率分布公式是________,黑桃不多于1張的概率是________.答案P(ξ=k)=eq\f(C\o\al(k,13)C\o\al(5-k,39),C\o\al(5,52))(k=0,1,2,3,4,5)0。633解析P(ξ=k)=eq\f(C\o\al(k,13)C\o\al(5-k,39),C\o\al(5,52))(k=0,1,2,3,4,5);P(ξ≤1)=P(ξ=0)+P(ξ=1)≈0.222+0.411=0。633.3.小題熱身(1)袋中有除標號不同外其余均相同的5個鋼球,分別標有1,2,3,4,5五個號碼.在有放回地抽取條件下依次取出2個球,設兩個球號碼之和為隨機變量ξ,則ξ所有可能值的個數(shù)是()A.25B.10C.9D.5答案C解析第一次可取號碼為1,2,3,4,5中的任意一個,由于是有放回地抽取,第二次也可取號碼為1,2,3,4,5中的任何一個,兩個球的號碼之和可能為2,3,4,5,6,7,8,9,10。故選C。(2)(2018·安康質檢)設隨機變量X的概率分布列為X1234Peq\f(1,3)meq\f(1,4)eq\f(1,6)則P(|X-3|=1)=________.答案eq\f(5,12)解析由eq\f(1,3)+m+eq\f(1,4)+eq\f(1,6)=1,解得m=eq\f(1,4),P(|X-3|=1)=P(X=2)+P(X=4)=eq\f(1,4)+eq\f(1,6)=eq\f(5,12)。題型1離散型隨機變量分布列的性質eq\o(典例)設隨機變量ξ的分布列Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(k,5)))=ak(k=1,2,3,4,5).(1)求常數(shù)a的值;(2)求Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ≥\f(3,5)));(3)求Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,10)<ξ<\f(7,10))).解由已知分布列為:ξeq\f(1,5)eq\f(2,5)eq\f(3,5)eq\f(4,5)eq\f(5,5)Pa2345(1)由a+2a+3a+4a+5a=1,得a=eq\f(1,15)(2)Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ≥\f(3,5)))=Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(3,5)))+Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(4,5)))+P(ξ=1)=eq\f(3,15)+eq\f(4,15)+eq\f(5,15)=eq\f(4,5),或Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ≥\f(3,5)))=1-Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ≤\f(2,5)))=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,15)+\f(2,15)))=eq\f(4,5)。(3)因為eq\f(1,10)<ξ〈eq\f(7,10)只有ξ=eq\f(1,5),eq\f(2,5),eq\f(3,5)滿足,故Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,10)〈ξ<\f(7,10)))=Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(1,5)))+Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(2,5)))+Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(3,5)))=eq\f(1,15)+eq\f(2,15)+eq\f(3,15)=eq\f(2,5).[條件探究1]若將典例條件“Peq\b\lc\(\rc\)(\a\vs4\al\co1(ξ=\f(k,5)))=ak,k=1,2,3,4,5”變?yōu)椤癙(ξ=i)=aeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))i,i=1,2,3”,求a的值.解∵P(ξ=i)=aeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))i(i=1,2,3)∴eq\f(2,3)a+eq\f(4,9)a+eq\f(8,27)a=1,得a=eq\f(27,38).[條件探究2]若將典例條件變?yōu)椤癙(ξ=n)=eq\f(a,nn+1)(n=1,2,3,4)."求Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)〈ξ<\f(5,2)))的值.解∵P(ξ=n)=eq\f(a,nn+1)。∴eq\f(a,2)+eq\f(a,6)+eq\f(a,12)+eq\f(a,20)=1,∴a=eq\f(5,4)。Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)〈ξ<\f(5,2)))=P(ξ=1)+P(ξ=2)=eq\f(5,6).方法技巧1.分布列性質的兩個作用(1)利用分布列中各事件概率之和為1可求參數(shù)的值及檢查分布列的正確性.(2)隨機變量X所取的值分別對應的事件是兩兩互斥的,利用這一點可以求隨機變量在某個范圍內的概率.提醒:求分布列中的參數(shù)值時,要保證每個概率值均為非負數(shù).2.隨機變量X的線性組合的概率及分布列問題(1)隨機變量X的線性組合η=aX+b(a,b∈R)是隨機變量.(2)求η=aX+b的分布列可先求出相應隨機變量的值,再根據(jù)對應的概率寫出分布列.沖關針對訓練1.隨機變量X的分布列如下:X-101Pabc其中a,b,c成等差數(shù)列,則P(|X|=1)=________.答案eq\f(2,3)解析a、b、c成等差數(shù)列,2b=a+c,又a+b+c=1,∴b=eq\f(1,3),∴P(|X|=1)=a+c=eq\f(2,3)。2.設離散型隨機變量X的分布列為X01234P0。20.10。10.3m求:(1)2X+1的分布列;(2)|X-1|的分布列.解由分布列的性質知:0.2+0。1+0.1+0。3+m=1,∴m=0。3.首先列表為X012342X+113579|X-1|10123從而由上表得兩個分布列為(1)2X+1的分布列2X+113579P0.20。10。10.30。3(2)|X-1|的分布列|X-1|0123P0.10.30。30.3題型2超幾何分布eq\o(典例)(2017·山東高考)在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用.現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(1)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望E(X).解(1)記接受甲種心理暗示的志愿者中包含A1但不包含B1的事件為M,則P(M)=eq\f(C\o\al(4,8),C\o\al(5,10))=eq\f(5,18).(2)由題意知X可取的值為0,1,2,3,4,則P(X=0)=eq\f(C\o\al(5,6),C\o\al(5,10))=eq\f(1,42),P(X=1)=eq\f(C\o\al(4,6)C\o\al(1,4),C\o\al(5,10))=eq\f(5,21),P(X=2)=eq\f(C\o\al(3,6)C\o\al(2,4),C\o\al(5,10))=eq\f(10,21),P(X=3)=eq\f(C\o\al(2,6)C\o\al(3,4),C\o\al(5,10))=eq\f(5,21),P(X=4)=eq\f(C\o\al(1,6)C\o\al(4,4),C\o\al(5,10))=eq\f(1,42)。因此X的分布列為X01234Peq\f(1,42)eq\f(5,21)eq\f(10,21)eq\f(5,21)eq\f(1,42)X的數(shù)學期望是E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0+1×eq\f(5,21)+2×eq\f(10,21)+3×eq\f(5,21)+4×eq\f(1,42)=2.方法技巧1.超幾何分布的兩個特點(1)超幾何分布是不放回抽樣問題.(2)隨機變量為抽到的某類個體的個數(shù).2.超幾何分布的應用條件及實質(1)條件:①考察對象分兩類;②已知各類對象的個數(shù);③從中抽取若干個個體,考察某類個體個數(shù)ξ的概率分布.(2)實質:超幾何分布主要用于抽檢產品、摸不同類別的小球等概率模型,其實質是古典概型.沖關針對訓練(2015·重慶高考)端午節(jié)吃粽子是我國的傳統(tǒng)習俗.設一盤中裝有10個粽子,其中豆沙粽2個,肉粽3個,白粽5個,這三種粽子的外觀完全相同,從中任意選取3個.(1)求三種粽子各取到1個的概率;(2)設X表示取到的豆沙粽個數(shù),求X的分布列與數(shù)學期望.解(1)令A表示事件“三種粽子各取到1個",則由古典概型的概率計算公式有P(A)=eq\f(C\o\al(1,2)C\o\al(1,3)C\o\al(1,5),C\o\al(3,10))=eq\f(1,4)。(2)X的所有可能值為0,1,2,且P(X=0)=eq\f(C\o\al(3,8),C\o\al(3,10))=eq\f(7,15),P(X=1)=eq\f(C\o\al(1,2)C\o\al(2,8),C\o\al(3,10))=eq\f(7,15),P(X=2)=eq\f(C\o\al(2,2)C\o\al(1,8),C\o\al(3,10))=eq\f(1,15).綜上知,X的分布列為X012Peq\f(7,15)eq\f(7,15)eq\f(1,15)故E(X)=0×eq\f(7,15)+1×eq\f(7,15)+2×eq\f(1,15)=eq\f(3,5)(個).題型3求離散型隨機變量的分布列角度1與互斥事件有關的分布列問題eq\o(典例)(2015·安徽高考)已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列和均值(數(shù)學期望).解(1)記“第一次檢測出的是次品且第二次檢測出的是正品"為事件A,則P(A)=eq\f(A\o\al(1,2)A\o\al(1,3),A\o\al(2,5))=eq\f(3,10).(2)X的可能取值為200,300,400。P(X=200)=eq\f(A\o\al(2,2),A\o\al(2,5))=eq\f(1,10),P(X=300)=eq\f(A\o\al(3,3)+C\o\al(1,2)C\o\al(1,3)A\o\al(2,2),A\o\al(3,5))=eq\f(3,10),P(X=400)=1-P(X=200)-P(X=300)=1-eq\f(1,10)-eq\f(3,10)=eq\f(6,10)。故X的分布列為X200300400Peq\f(1,10)eq\f(3,10)eq\f(6,10)E(X)=200×eq\f(1,10)+300×eq\f(3,10)+400×eq\f(6,10)=350(元).角度2與獨立事件(或獨立重復試驗)有關的分布列問題eq\o(典例)(2017·天津高考)從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為eq\f(1,2),eq\f(1,3),eq\f(1,4).(1)記X表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量X的分布列和數(shù)學期望;(2)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.解(1)隨機變量X的所有可能取值為0,1,2,3.P(X=0)=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))=eq\f(1,4),P(X=1)=eq\f(1,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))×eq\f(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))×eq\f(1,4)=eq\f(11,24),P(X=2)=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))×eq\f(1,3)×eq\f(1,4)+eq\f(1,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))×eq\f(1,4)+eq\f(1,2)×eq\f(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))=eq\f(1,4),P(X=3)=eq\f(1,2)×eq\f(1,3)×eq\f(1,4)=eq\f(1,24)。所以隨機變量X的分布列為X0123Peq\f(1,4)eq\f(11,24)eq\f(1,4)eq\f(1,24)隨機變量X的數(shù)學期望E(X)=0×eq\f(1,4)+1×eq\f(11,24)+2×eq\f(1,4)+3×eq\f(1,24)=eq\f(13,12)。(2)設Y表示第一輛車遇到紅燈的個數(shù),Z表示第二輛車遇到紅燈的個數(shù),則所求事件的概率為P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=eq\f(1,4)×eq\f(11,24)+eq\f(11,24)×eq\f(1,4)=eq\f(11,48)。所以這2輛車共遇到1個紅燈的概率為eq\f(11,48)。方法技巧離散型隨機變量分布列的求解步驟1.明取值:明確隨機變量的可能取值有哪些,且每一個取值所表示的意義.2.求概率:要弄清楚隨機變量的概率類型,利用相關公式求出變量所對應的概率.3.畫表格:按規(guī)范要求形式寫出分布列.4.做檢驗:利用分布列的性質檢驗分布列是否正確.提醒:求隨機變量某一范圍內取值的概率,要注意它在這個范圍內的概率等于這個范圍內各概率值的和.沖關針對訓練乒乓球臺面被球網(wǎng)分隔成甲、乙兩部分,如圖,甲上有兩個不相交的區(qū)域A,B,乙被劃分為兩個不相交的區(qū)域C,D,某次測試要求隊員接到落點在甲上的來球后向乙回球.規(guī)定:回球一次,落點在C上記3分,在D上記1分,其他情況記0分.對落點在A上的來球,隊員小明回球的落點在C上的概率為eq\f(1,2),在D上的概率為eq\f(1,3);對落點在B上的來球,小明回球的落點在C上的概率為eq\f(1,5),在D上的概率為eq\f(3,5)。假設共有兩次來球且落在A,B上各一次,小明的兩次回球互不影響.求:(1)小明兩次回球的落點中恰有一次的落點在乙上的概率;(2)兩次回球結束后,小明得分之和ξ的分布列與數(shù)學期望.解(1)記Ai為事件“小明對落點在A上的來球回球的得分為i分”(i=0,1,3),則P(A3)=eq\f(1,2),P(A1)=eq\f(1,3),P(A0)=1-eq\f(1,2)-eq\f(1,3)=eq\f(1,6).記Bi為事件“小明對落點在B上的來球回球的得分為i分"(i=0,1,3),則P(B3)=eq\f(1,5),P(B1)=eq\f(3,5),P(B0)=1-eq\f(1,5)-eq\f(3,5)=eq\f(1,5)。記D為事件“小明兩次回球的落點中恰有1次的落點在乙上”.由題意,D=A3B0+A1B0+A0B1+A0B3,由事件的獨立性和互斥性,P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)=eq\f(1,2)×eq\f(1,5)+eq\f(1,3)×eq\f(1,5)+eq\f(1,6)×eq\f(3,5)+eq\f(1,6)×eq\f(1,5)=eq\f(3,10),所以小明兩次回球的落點中恰有1次的落點在乙上的概率為eq\f(3,10).(2)由題意,隨機變量ξ可能的取值為0,1,2,3,4,6,由事件的獨立性和互斥性,得P(ξ=0)=P(A0B0)=eq\f(1,6)×eq\f(1,5)=eq\f(1,30),P(ξ=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=eq\f(1,3)×eq\f(1,5)+eq\f(1,6)×eq\f(3,5)=eq\f(1,6),P(ξ=2)=P(A1B1)=eq\f(1,3)×eq\f(3,5)=eq\f(1,5),P(ξ=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=eq\f(1,2)×eq\f(1,5)+eq\f(1,5)×eq\f(1,6)=eq\f(2,15),P(ξ=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=eq\f(1,2)×eq\f(3,5)+eq\f(1,3)×eq\f(1,5)=eq\f(11,30),P(ξ=6)=P(A3B3)=eq\f(1,2)×eq\f(1,5)=eq\f(1,10).可得隨機變量ξ的分布列為ξ012346Peq\f(1,30)eq\f(1,6)eq\f(1,5)eq\f(2,15)eq\f(11,30)eq\f(1,10)所以數(shù)學期望E(ξ)=0×eq\f(1,30)+1×eq\f(1,6)+2×eq\f(1,5)+3×eq\f(2,15)+4×eq\f(11,30)+6×eq\f(1,10)=eq\f(91,30)。1.(2016·天津高考)某小組共10人,利用假期參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4?,F(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.(1)設A為事件“選出的2人參加義工活動次數(shù)之和為4",求事件A(2)設X為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.解(1)由已知,有P(A)=eq\f(C\o\al(1,3)C\o\al(1,4)+C\o\al(2,3),C\o\al(2,10))=eq\f(1,3)。所以,事件A發(fā)生的概率為eq\f(1,3).(2)隨機變量X的所有可能取值為0,1,2。P(X=0)=eq\f(C\o\al(2,3)+C\o\al(2,3)+C\o\al(2,4),C\o\al(2,10))=eq\f(4,15),P(X=1)=eq\f(C\o\al(1,3)C\o\al(1,3)+C\o\al(1,3)C\o\al(1,4),C\o\al(2,10))=eq\f(7,15),P(X=2)=eq\f(C\o\al(1,3)C\o\al(1,4),C\o\al(2,10))=eq\f(4,15)。所以,隨機變量X的分布列為X012Peq\f(4,15)eq\f(7,15)eq\f(4,15)隨機變量X的數(shù)學期望E(X)=0×eq\f(4,15)+1×eq\f(7,15)+2×eq\f(4,15)=1.2.(2018·山西八校聯(lián)考)某大型汽車城為了了解銷售單價(單位:萬元)在[8,20]內的轎車的銷售情況,從2016年上半年已經(jīng)銷售的轎車中隨機抽取100輛,獲得的所有樣本數(shù)據(jù)按照[8,10),[10,12),[12,14),[14,16),[16,18),[18,20]分成6組,制成如圖所示的頻率分布直方圖.已知樣本中銷售單價在[14,16)內的轎車數(shù)是銷售單價在[18,20]內的轎車數(shù)的2倍.(1)求出x與y,再根據(jù)頻率分布直方圖估計這100輛轎車銷售單價的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)若將頻率視為概率,從這批轎車中有放回地隨機抽取3輛,求至少有1輛轎車的銷售單價在[14,16)內的概率;(3)用分層抽樣的方法從銷售單價在[8,20]內的轎車中共抽取20輛,再從抽出的20輛轎車中隨機抽取2輛,X表示這2輛轎車中銷售單價在[10,12)內的轎車的數(shù)量,求X的分布列及數(shù)學期望E(X).解(1)樣本中轎車的銷售單價在[14,16)內的轎車數(shù)是x×2×100=200x,樣本中轎車的銷售單價在[18,20]內的轎車數(shù)是y×2×100=200y,依題意,有200x=2×200y,即x=2y,①根據(jù)頻率分布直方圖可知(0。1×2+0。025+x+0.05+y)×2=1,②由①②得x=0。15,y=0。075。根據(jù)頻率分布直方圖估計這100輛轎車銷售單價的平均數(shù)為eq\f(8+10,2)×0。025×2+eq\f(10+12,2)×0.05×2+eq\f(12+14,2)×0.1×2+eq\f(14+16,2)×0。15×2+eq\f(16+18,2)×0.1×2+eq\f(18+20,2)×0.075×2=0。45+1。1+2.6+4。5+3.4+2.85=14.9(萬元).(2)若將頻率視為概率,從這批轎車中有放回地隨機抽取3輛,則至少有1輛轎車的銷售單價在[14,16)內的概率為1-Ceq\o\al(0,3)(0.3)0×(0.7)3=1-0.343=0.657.(3)因為銷售單價在[8,10),[10,12),[12,14),[14,16),[16,18),[18,20]的轎車的分層抽樣比為1∶2∶4∶6∶4∶3,故在抽取的20輛轎車中,銷售單價在[10,12)內的轎車有20×eq\f(2,20)=2(輛),X的所有可能取值為0,1,2,則P(X=0)=eq\f(C\o\al(0,2)C\o\al(2,18),C\o\al(2,20))=eq\f(153,190),P(X=1)=eq\f(C\o\al(1,2)C\o\al(1,18),C\o\al(2,20))=eq\f(36,190)=eq\f(18,95),P(X=2)=eq\f(C\o\al(2,2),C\o\al(2,20))=eq\f(1,190)。所以X的分布列為X012Peq\f(153,190)eq\f(18,95)eq\f(1,190)E(X)=0×eq\f(153,190)+1×eq\f(18,95)+2×eq\f(1,190)=eq\f(1,5).[重點保分兩級優(yōu)選練]A級一、選擇題1.設某項試驗的成功率是失敗率的2倍,用隨機變量X去描述1次試驗的成功次數(shù),則P(X=0)等于()A.0B。eq\f(1,2)C.eq\f(1,3)D.eq\f(2,3)答案C解析P(X=1)=2P(X=0),且P(X=1)+P(X=0)=1。所以P(X=0)=eq\f(1,3).故選C。2.若某一隨機變量X的概率分布如下表,且m+2n=1.2,則m-eq\f(n,2)的值為()X0123P0。1mn0.1A.-0.2B.0.2C.0。1D.-0.1答案B解析由m+n+0.2=1,又m+2n=1.2,可得m=n=0。4,m-eq\f(n,2)=0.2.故選B。3.袋中有大小相同的紅球6個、白球5個,從袋中每次任意取出1個球,直到取出的球是白球時為止,所需要的取球次數(shù)為隨機變量ξ,則ξ的可能值為()A.1,2,…,6 B.1,2,…,7C.1,2,…,11 D.1,2,3,…答案B解析除白球外,其他的還有6個球,因此取到白球時取球次數(shù)最少為1次,最多為7次.故選B。4.設X是一個離散型隨機變量,其分布列為:X-101P0。51-2qq2則q等于()A.1B.1±eq\f(\r(2),2)C.1-eq\f(\r(2),2)D.1+eq\f(\r(2),2)答案C解析由分布列的性質得eq\b\lc\{\rc\(\a\vs4\al\co1(0≤1-2q〈1,,0≤q2<1,,0.5+1-2q+q2=1))?eq\b\lc\{\rc\(\a\vs4\al\co1(0<q≤\f(1,2),,q=1±\f(\r(2),2),))∴q=1-eq\f(\r(2),2),故選C。5.已知某一隨機變量X的概率分布如下,且E(X)=6。9,則a的值為()X4a9Pm0.20。5A.5B.6C.7D.8答案B解析因為在分布列中,各變量的概率之和為1,所以m=1-(0.2+0.5)=0。3,由數(shù)學期望的計算公式,可得4×0。3+a×0。2+9×0.5=6。9,a=6,故選B。6.已知離散型隨機變量X的分布列為X012P0.51-2qeq\f(1,3)q則P(eq\r(X)∈Z)=()A.0。9B.0。8C.0。7D.0。6答案A解析由分布列性質得0。5+1-2q+eq\f(1,3)q=1,解得q=0.3,∴P(eq\r(X)∈Z)=P(X=0)+P(X=1)=0.5+1-2×0。3=0.9,故選A。7.(2017·泰安模擬)若P(X≤x2)=1-β,P(X≥x1)=1-α,其中x1〈x2,則P(x1≤X≤x2)等于()A.(1-α)(1-β) B.1-(α+β)C.1-α(1-β) D.1-β(1-α)答案B解析顯然P(X>x2)=β,P(X〈x1)=α。由概率分布列的性質可知P(x1≤X≤x2)=1-P(X〉x2)-P(X<x1)=1-α-β.故選B。8.(2018·濰坊模擬)若隨機變量X的分布列為X-2-10123P0。10。20。20.30.10.1則當P(X〈a)=0.8時,實數(shù)a的取值范圍是()A.(-∞,2]B.[1,2]C.(1,2]D.(1,2)答案C解析由隨機變量X的分布列,知P(X<-1)=0。1,P(X〈0)=0。3,P(X<1)=0。5,P(X<2)=0.8,則當P(X〈a)=0.8時,實數(shù)a的取值范圍是(1,2].故選C。9.(2017·煙臺模擬)一只袋內裝有m個白球,n-m個黑球,連續(xù)不放回地從袋中取球,直到取出黑球為止,設此時取出了ξ個白球,下列概率等于eq\f(n-mA\o\al(2,m),A\o\al(3,n))的是()A.P(ξ=3)B.P(ξ≥2)C.P(ξ≤3)D.P(ξ=2)答案D解析依題意知,eq\f(n-mA\o\al(2,m),A\o\al(3,n))是取了3次,所以取出白球應為2個.故選D.10.袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4).現(xiàn)從袋中任取一球,ξ表示所取球的標號.若η=aξ-2,E(η)=1,則a的值為()A.2B.-2C.1。5D.3答案A解析由題意知ξ的可能取值為0,1,2,3,4,則ξ的分布列為ξ01234Peq\f(1,2)eq\f(1,20)eq\f(1,10)eq\f(3,20)eq\f(1,5)∴E(ξ)=0×eq\f(1,2)+1×eq\f(1,20)+2×eq\f(1,10)+3×eq\f(3,20)+4×eq\f(1,5)=eq\f(3,2),∵η=aξ-2,E(η)=1,∴aE(ξ)-2=1,∴eq\f(3,2)a-2=1,解得a=2。故選A。二、填空題11.設隨機變量X等可能取值1,2,3,…,n,如果P(X〈4)=0。3,那么n=________.答案10解析由于隨機變量X等可能取1,2,3,…,n。所以取到每個數(shù)的概率均為eq\f(1,n)。∴P(X〈4)=P(X=1)+P(X=2)+P(X=3)=eq\f(3,n)=0。3,∴n=10。12.(2018·臨汾聯(lián)考)口袋中有5只球,編號為1,2,3,4,5,從中任意取3只球,以X表示取出的球的最大號碼,則X的分布列為________.答案X345P0.10.30.6解析X的取值為3,4,5.又P(X=3)=eq\f(1,C\o\al(3,5))=eq\f(1,10),P(X=4)=eq\f(C\o\al(2,3),C\o\al(3,5))=eq\f(3,10),P(X=5)=eq\f(C\o\al(2,4),C\o\al(3,5))=eq\f(3,5)?!嚯S機變量X的分布列為X345P0。10。30。613.已知甲盒內有大小相同的1個紅球和3個黑球,乙盒內有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內各任取2個球.設ξ為取出的4個球中紅球的個數(shù),則P(ξ=2)=________.答案eq\f(3,10)解析ξ可能取的值為0,1,2,3,P(ξ=0)=eq\f(C\o\al(2,3)C\o\al(2,4),C\o\al(2,4)C\o\al(2,6))=eq\f(1,5),P(ξ=1)=eq\f(C\o\al(1,3)C\o\al(2,4)+C\o\al(2,3)C\o\al(1,2)C\o\al(1,4),C\o\al(2,4)C\o\al(2,6))=eq\f(7,15),又P(ξ=3)=eq\f(C\o\al(1,3),C\o\al(2,4)C\o\al(2,6))=eq\f(1,30),∴P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-eq\f(1,5)-eq\f(7,15)-eq\f(1,30)=eq\f(3,10)。14.如圖所示,A,B兩點5條連線并聯(lián),它們在單位時間內能通過的最大信息量依次為2,3,4,3,2?,F(xiàn)記從中任取三條線且在單位時間內都通過的最大信息總量為ξ,則P(ξ≥8)=________.答案eq\f(4,5)解析解法一:由已知,ξ的取值為7,8,9,10,∵P(ξ=7)=eq\f(C\o\al(2,2)C\o\al(1,2),C\o\al(3,5))=eq\f(1,5),P(ξ=8)=eq\f(C\o\al(2,2)C\o\al(1,1)+C\o\al(1,2)C\o\al(2,2),C\o\al(3,5))=eq\f(3,10),P(ξ=9)=eq\f(C\o\al(1,2)C\o\al(1,2)C\o\al(1,1),C\o\al(3,5))=eq\f(2,5),P(ξ=10)=eq\f(C\o\al(2,2)C\o\al(1,1),C\o\al(3,5))=eq\f(1,10),∴ξ的概率分布列為ξ78910Peq\f(1,5)eq\f(3,10)eq\f(2,5)eq\f(1,10)∴P(ξ≥8)=P(ξ=8)+P(ξ=9)+P(ξ=10)=eq\f(3,10)+eq\f(2,5)+eq\f(1,10)=eq\f(4,5)。解法二:P(ξ≥8)=1-P(ξ=7)=eq\f(4,5).B級三、解答題15.(2018·太原模擬)根據(jù)某電子商務平臺的調查統(tǒng)計顯示,參與調查的1000位上網(wǎng)購物者的年齡情況如圖所示.(1)已知[30,40),[40,50),[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求a,b的值;(2)該電子商務平臺將年齡在[30,50)內的人群定義為高消費人群,其他年齡段的人群定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調查的1000位上網(wǎng)購物者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此3人獲得的代金券總和X(單位:元)的分布列與數(shù)學期望.解(1)由題意可知eq\b\lc\{\rc\(\a\vs4\al\co1(2b=a+0。015,,0.01+0.015×2+b+a×10=1,))解得a=0。035,b=0。025.(2)利用分層抽樣從樣本中抽取10人,易知其中屬于高消費人群的有6人,屬于潛在消費人群的有4人.從該10人中抽取3人,此3人所獲得的代金券的總和為X(單位:元),則X的所有可能取值為150,200,250,300.P(X=150)=eq\f(C\o\al(3,6),C\o\al(3,10))=eq\f(1,6),P(X=200)=eq\f(C\o\al(2,6)C\o\al(1,4),C\o\al(3,10))=eq\f(1,2),P(X=250)=eq\f(C\o\al(1,6)C\o\al(2,4),C\o\al(3,10))=eq\f(3,10),P(X=300)=eq\f(C\o\al(3,4),C\o\al(3,10))=eq\f(1,30).X的分布列為X150200250300Peq\f(1,6)eq\f(1,2)eq\f(3,10)eq\f(1,30)E(X)=150×eq\f(1,6)+200×eq\f(1,2)+250×eq\f(3,10)+300×eq\f(1,30)=210。16.一批產品需要進行質量檢驗,檢驗方案是:先從這批產品中任取4件作檢驗,這4件產品中優(yōu)質品的件數(shù)記為n.如果n=3,再從這批產品中任取4件作檢驗,若都為優(yōu)質品,則這批產品通過檢驗;如果n=4,再從這批產品中任取1件作檢驗,若為優(yōu)質品,則這批產品通過檢驗;其他情況下,這批產品都不能通過檢驗.假設這批產品的優(yōu)質品率為50%,即取出的每件產品是優(yōu)質品的概率都為eq\f(1,2),且各件產品是否為優(yōu)質品相互獨立.(1)求這批產品通過檢驗的概率;(2)已知每件產品的檢驗費用為100元,且抽取的每件產品都需要檢驗,對這批產品作質量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望.解(1)設第一次取出的4件產品中恰有3件優(yōu)質品為事件A1,第一次取出的4件產品全是優(yōu)質品為事件A2,第二次取出的4件產品都是優(yōu)質品為事件B1,第二次取出的1件產品是優(yōu)質品為事件B2,這批產品通過檢驗為事件A,依題意有A=(A1B1)∪(A2B2),且A1B1與A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=eq\f(4,16)×eq\f(1,16)+eq\f(1,16)×eq\f(1,2)=eq\f(3,64)。(2)X可能的取值為400,500,800,并且P(X=400)=1-eq\f(4,16)-eq\f(1,16)=eq\f(11,16),P(X=500)=eq\f(1,16),P(X=800)=eq\f(1,4).所以X的分布列為X400500800Peq\f(11,16)eq\f(1,16)eq\f(1,4)E(X)=400×eq\f(11,16)+500×eq\f(1,16)+800×eq\f(1,4)=506.25.17.(2018·廣州測試)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)(2)如果隨機抽取的7名同學的數(shù)學、物理成績(單位:分)對應如下表:學生序號i1234567數(shù)學成績xi60657075858790物理成績yi70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為ξ,求ξ的分布列和數(shù)學期望;②根據(jù)上表數(shù)據(jù),求物理成績y關于數(shù)學成績x的線性回歸方程(系數(shù)精確到0。01);若班上某位同學的數(shù)學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜??附:線性回歸方程y=eq\o(b,\s\up16(^))x+eq\o(a,\s\up16(^)),其中eq\o(b,\s\up16(^))=eq\f(\o(∑,\s\up16(n),\s\do10(i=1))xi-\x\to(x)yi-\x\to(y),\o(∑,\s\up16(n),\s\do10(i=1))xi-\x\to(x)2),eq\o(a,\s\up16(^))=eq\o(y,\s\up16(-))-eq\o(b,\s\up16(^))eq\x\to(x).eq\x\to(x)eq\x\to(y)eq\o(∑,\s\up16(7),\s\do10(i=1))(xi-eq\x\to(x))2eq\o(∑,\s\up16(7),\s\do10(i=1))(xi-eq\x\to(x))(yi-eq\x\to(y))7683812526解(1)依據(jù)分層抽樣的方法,24名女同學中應抽取的人數(shù)為eq\f(7,42)×24=4名,18名男同學中應抽取的人數(shù)為eq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版信息技術專業(yè)大學生實習項目合同協(xié)議3篇
- 二零二五年頂名購置住宅合作協(xié)議3篇
- 二零二五年社區(qū)停車場車位買賣及租賃合同
- 2024物業(yè)管理公司安全文化建設與實施合同3篇
- 二零二五年度公司并購項目股權交割與整合合同3篇
- 2024年簡化版汽車租賃協(xié)議樣式版
- 專業(yè)勞務合作協(xié)議2024年通行版版B版
- 二零二五版電視互動節(jié)目主持人聘任協(xié)議3篇
- 2024港口物流作業(yè)合同
- 二零二五年新型耐磨木地板研發(fā)與應用合同3篇
- 商業(yè)倫理與企業(yè)社會責任(山東財經(jīng)大學)智慧樹知到期末考試答案章節(jié)答案2024年山東財經(jīng)大學
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- 人傷理賠專業(yè)試卷
- 主要負責人重大隱患帶隊檢查表
- 魯濱遜漂流記人物形象分析
- 新版心理傾聽師資格考試備考題庫(精簡250題)
- 暫態(tài)地電壓局部放電檢測技術課件
- 220kV變壓器監(jiān)造細則
- 8 泵站設備安裝工程單元工程質量驗收評定表及填表說明
- 企業(yè)年會盛典元旦頒獎晚會通用PPT模板
- 污水管道工程監(jiān)理控制要點
評論
0/150
提交評論