版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AReviewofProbabilityandAReviewofProbabilityandI.SomePopulation(總體)thesetofallpossiblerandom,orchance,experimente.g.allthestudentsinthis ):eachunitinthee.g.eachstudentinthissampling(隨機抽樣)fromapopulatione.g.asampleof20studentsbyrandomsamplingfromthisRandomRandomVariablerv)orStochasticVariable(量):anumericaldescriptionofthe experiment(denotedbyX,Y,Z,etc,andthevaluestakenbythemaredenotedbyx,y,z,etc).e.g.X:EconometricsgradesofallthestudentsinthiscanconsiderapopulationasarandomCanconsidersampleasasetofsomeobservations(觀測值)inthispopulation3(1).Discreterv(離散型隨 finite(orcountablyinfinite)sequenceofvalues.Example: eofthrowing(2).Continuousrv(連續(xù)型隨 anyvalueinsomeintervalofvalues.Example:heightofpeople,mosteconomic4likelihoodthataneventwilloccurProbabilitydistribution(PD)(概率分布):Athevaluesthatarandomvariablecanassume.:afunctiontodescribeprobabilitydistributionofX,denotedbyf(x).Fordiscreterv:f(x)=P(X= fori=1,2,= forX5P(axb)fExample:ExpectedvalueandvarianceforthenumberofExample:ExpectedvalueandvarianceforthenumberofcarssoldduringadayatDicarloMotorsjTargetofStatistic:Ifapopulationisunknown,getasamplebyrandomsamplingfromitandthenusesampleinformationtoinferinformation(mainlyProbabilitydistribution)ofthisunknownpopulation.Jointpointofsampleandpopulation:Probabilitydistribution(PD),becausePDofasamplefromapopulationisthesameasthatofthispopulationusesamplePDtoinferpopulation7Thenumericalfeaturesofapopulation(orrandomvariable)PDareoftendescribedusingitsprobabilitycovarianceandcorrelationcoefficient(computedfromprobabilitydensityfunction).8--measuresofvariabilityor9(1)ExpectedValue(orexpectation,mean):ameasureofthecentrallocationforrvX,denotedbyE(X)ororxFordiscreteE(X)xjf(xjjE(X)xf(2)Variance:(2)Variance:measureshowfaraparticularvalueoftherandomvariableisfromtheexpectedvalueorE(X).Var(X)E(XFordiscretevariable,givenX{x1,x2,...,xkVar(X)(xj)f(xjForcontinuousvariable,Var(X)(X)2fsd(X)Var(X)012345Var(XVar(X)(xj)f(x)jsd(X)1.25f0123465Cov(X,Y)xyE[(Xx)(YyCov(X,Y)E(XYxYXyxyE(XY)E(xY)E(Xy)E(xyE(XY)xwhichisoftenusedtocalculatePropertiesPropertiesofIfX,Yareindependentrvs,Cov(X,Y)=0becauseE(XY)=E(X)E(Y)ButifCov(X,Y)=0,cannotsayX,YareindependentrvsIfY=X2,YandXarenotindependentButifE(X)=x=0,E(X3)=0Cov(X,Y)=E[(Xx)(X2x2)]=E(X3)=Ifa1,b1,a2,b2areCov(a1X+b1,a2Y+b2)=(3)|Cov(X,Y)|Correlationcoefficient:anumericalmeasureoflinearassociationbetweentwovariablesCorr(X,Y) Cov(X,Y Cov(X,Y)=0Corr(X,Y)=–1Corr(X,Y)+1indicateaperfectpositiveassociation,–1indicatesaperfectnegativeassociationGivenconstantsa1,b1,a2,b2Ifa1a2>0,Corr(a1X+b1,a2Y+b2)=Corr(X,Y)Ifa1a2<0,Corr(a1X+b1,a2Y+b2)=–Corr(X,Y)PropertiesPropertiesofExpectedForanyconstant常數(shù))cE(ccE(cXcE(X)Foranyconstantsaandb,E(aX+b)=aE(X)+If{a1,a2,…,an}areconstantsand{X1,X2,…,Xn}arerandomvariables,thenE(a1X1+a2X2+…+anXn)=a1E(X1)+a2E(X2)+…+EaiXiaE(XIfeacha1,E E(X(4)IfX,Yareindependentrvs,E(XY)=Foraconstantc,Var(c)=0,Var(cX)=Ifaandbareconstants,Var(aX+b)=Var(X)=E(X–)2=E(X2+2=E(X2)+E(2)–2E(X)==E(X2)whichisoftenusedtocalculatesd(c)=sd(aX+b)=PropertiesofPropertiesofVar(aX+bY)=a2Var(X)+b2Var(Y)+2abCov(X,Y)IfXandYarenotcorrelated,Cov(X,Y)=0Var(XY)=Var(X)+If{X1,X2,…,Xn}arepairwiseuncorrelatedrandomvariablesand{ai:i=1,2,…,n}areconstants,=a1Var(X1)+a2Var(X2)+…+anVar(Xn)22Varna iiaVar(XiIfeachai1,VarXVar(XniiiitheconditionalexpectedvalueofYonXE(Y|X)(orconditionalexpectation,conditionalmean)fordiscretervY{y1,y2,...ym},E(Y|X)yjfY|X(yjY=a+bX+E(Y|X)=E[(a+bX+cX2)|X]=a+bX+Note:IfXtakesaspecialvaluexi,E(Y|xi)isaPropertiesPropertiesofConditionalExpectedForanyfunctionc(X),E[c(X)|X]=Forfunctiona(X)and=a(X)E(Y|X)+IfX,Yareindependentrvs,E(Y|X)=AspecialIfX,UareindependentrvsandE(U)=0E(U|X)=E(U)=0E[E(Y|X)]=E(Y|X)=E(Y)Cov(X,Y)=IfXdoesnotchangetheexpectedvalueofY,thenXandYmustbeuncorrelatedifXandYarecorrelated,thenE(Y|X)mustdependonX. TheconverseofProperty5isnottrue:ifXandYareuncorrelated,E(Y|X)couldstilldependonX.ifE(X)=0,E(X3)=0,Y=X2,thenCov(X,Y)=ButnowE(Y|X)=X2,E(Y|X)couldstilldependonVar(YX)E{[YE(Y|x)]2|IfX,Yareindependentrvs,Var(Y|X)=meanandstandarddeviation,X~N(,2) e(xu)/thehighestthehighestpointonthenormalcurveisattheThestandarddeviationdeterminesthewidthoftheThetotalareaunderthecurveforthenormalprobabilitydistributionis1FigureB.7:Bell-shapedAnormaldistributionwithameanofzeroandastandarddeviationofone. WhichisaspecialcaseofNormalPDF:(Z)eZPropertiesofPropertiesofNormalIfX~N(,2),then(X)/~N(0,X~N(3650050002)Z=(X-36500)/5000IfX~N(,2),thenaX+b~N(a+b,IfXandYarejointlynormallydistributed,thentheyareindependentifandonlyifCov(X,Y)=0.distributednormalrandomvariableshasanormalFromproperty4,wevariableshasanormalThatis,ifY1,Y2,…,YnareindependentrandomvariablesandeachfollowsnormaldistributionN(,2),Y~N(,2/tdistributionTheFIV.IV.OtherDefinitionsonGivenasamplex={x1,x2,…,xn}fromapopulationxixn(xix)xixxinxxin(xin)i i i i i ixxnSampleStandardDeviation:thepositivesquarerootofthesamplevariancesExample:samplex={46,54,42,46,xxxxxi1 4654424632s(4644)2(5444)2(4244)2(4644)2(325=s64Example:Example:Calculationsforthesamplecovariancex3,yxxixyiyn1WhichisanunbiasedestimatorofpopulationE(Sxy)=xxiyi(xxi(yi(xix)(yiy2--111--43030904131931--2430-090418182--1500xixyiy99nssxxn1yyn120566rsxys Ch.1TheNatureofEconometricsCh.1TheNatureofEconometricsEconomic1WhatisEconometrics計量經(jīng)濟學abranchofevaluateand hefieldofEducation:effectofschoolspendingonstudentperformance.2MethodsMethodsinEconometricsstatisticalobservationaldata觀測數(shù)據(jù))--appearinsocial--appearinnatural 1.2Stepsin ysis GivenatopicinrealFormulatethequestionof izationQ=f(P,--less4ExampleExample1.2:Wagewage=f(educ,exper,wage:hourlywage,measureproductivityeduc:yearsofformaleducation,exper:yearsofworkingtraining:weeksspentinjobNote:Allthevariablesinthefinalmodelmusthaveavailabledata5--ucontainsunobservedfactorsinthewage=0+1educ+2exper+3training+uucontainsotherunobservedfactorsaffectingwage,background,etc.6y=0+1y=0+1x1+2x2+3x3+uy:wagehere數(shù)associatedwithx’srelationshipbetweenyandx’su:containsunobservedfactorsotherthanx’sthataffecty,7CollectdataforeachfactorStatisticalinference統(tǒng)計推斷andtests估計和檢驗)andeconometricThegoalof estimatetheparameters’sinthemodeltesthypotheses假設aboutthese’s--thevaluesandsignsofthe’sdeterminethevalidityofaneconomictheoryandtheeffectsofcertainpolicies.8estimateestimateeconomictesteconomicevaluateandimplement ernmentandbusiness--and/91.3TheStructureofEconomicTypesofCross-SectionaldataTimeSeriesdataPooledCrossSectiondata(omitted)混合數(shù)Paneldata(omitted)Cross-sectionalCross-sectional--asampleofindividuals,households,firms,cities,states,countries,oravarietyofotherunits,takenatagivenpointininformationtakenatagivenpointintimeTable1.1:across-sectionaldataseton526workingindividualsfortheyear1976,inabbreviatedinthesample,showingtheorderofeconometricssoftwarepackagesassignanorderingofdatadoesnoteachotherTimeseriesconsistofobservationsonavariableorseveralvariablesforeachtimeperiodover–e.g.dailystockpricesin2004,GDPinthepast20yearsdatafrequency:Daily,weekly,monthly,quarterlyandkeykeyfeature:chronologicalorderingof observationsovertimearenotindependent,butarerelatedtotheirrecenthistoryTrends趨勢andseasonalitywillbee.g.GDP,morecomplicated 1.41.4Causality因果關系andNotionofCeterisSimplyestablishingarelationshipbetweenyandxIneconometricmodel,whenstudyingtherelationshipbetweentwovariables,allotherrelevantfactorsmustbeheldfixed.ThenthisrelationshipcanoftenbeconsideredtobeExample1.4:MeasurethereturntoIfaischosenfromthepopulationandgivenanotheryearofeducation,byhowmuchwillhisherwageInthesimplestequation:wage=0+1educ+1:thereturntou:otherfactorsotherthaneducationaffectingwage,suchasworkingexperience,abilityceterisparibus:whenanotheryearofeducationisgiventothe,allotherfactorsotherthaneducationareassumedtobeheldfixed. whenanotheryearofeducationisgiventothe,allotherfactorsotherthaneducationnotbeheld--educationlevelsmaynotbeindependentlyofallotherfactorsaffectingwage:Ineconometricresearch,sometimesitmaybeCh.2:TheSimpleRegressionCh.2:TheSimpleRegressiony=0+1x+12.1DefinitionofTheSimpleRegressionGeneraldefinition:y=f(x,x:independentvariable,exnatoryvariableu:errorNotexactfunctionalrelationship,butstatisticalrelationshipbetweenyandx2ChapterChapter2beginswithsimplelinearregression(SLR)model,whichisnotoftenusedinappliedeconometrics,butisagoodstartpointforfurtherstudylater.3Thesimplelinearregressionifu=0,y=:“Runtheregressionofyonx”or“regressyonNote:inthistextbook,usey,x(notY,X)todenotefactors(variables)inthemodels.4MainlyMainlyyzeslopeparameter1,notintercept0Meansofinterceptwhenx=0,y=notmakesense,sincex0inmayaverageeffectofalltheotherfactorsotherthanxonyButalwaysincludeintercept0exceptincaseof0=0basedonstrongtheory.5Usuallywehavenoallinformationon(x,y)inthepopulation0,1anduareunobservedeveniftheyhavetoestimate0,1usingsampledataxandyfromthe6y=0+1x+uy:gradex:studyhoursperTheteacherisinterestedintheeffectofstudyhoursongrade,holdingotherfactorsfixed.ability,mathematicsbackground,etc.7fromE(u)=0andE(u|x)=averagevalueofunobservedfactorsinudoesdependonxcov(x,u)=Weassumetheunobservedfactors,suchasability,affectinggradeareunrelatedtostudyhoursandhaveanaverageofzerointhepopulationofallstudents.8ProblemProblem--wecanredefinetheinterceptinthisequationtomakeE(ability)=0orE(u)=0truey=0+1x+usupposethatE(u)0=y=(0+0)+1x+(uCallthenewerrore=u0,E(e)=Thenewinterceptis0+0,buttheslopeisstill1.themodelcanalwaysberewrittenwiththesameslope,butanewinterceptanderrorterm,wherethenewerrorhasazeroexpectedvalue.9Ifstudyhoursarechosenindependentlyofotherfeaturesofthestudents,theotherfactorswillnotdependonstudyHowever,ifstudent’sabilityincreasedwithmoretimespentonstudy,thentheexpectedvalueofuchangeswithstudyhours,ZeroConditionalMeanwillnotPopulationPopulationRegressionFunctionGiventheassumptionofZeroE(y|x)=E(0|x)+E(1x|x)+PRF:E(y|x)=0+measureonaverageinthepopulation,howychangewiththechangeinx0and1needtobeestimatedregressiony=0+1x+ [y=E(y|x)+Foreachindividualinthepopulation,howchangewiththechangeinxyincludetwocomponents:systematicpartofy:E(y|x)=0+1x,exinedbyxunsystematicpart,u,notexinedbyx.Example1:-{(xi,yExample1:-{(xi,yi):i=1,2,3,4}arethesampledataofgradesandstudyhoursfor4studentsfromthepopulationofthewholeclass)Givenanyx,thedistributionofPopulationregression2.22.2DerivingtheOrdinaryLeastSquares(OLS)y=0+1x+ThreeestimationmethodstoestimatePRF(and BasicideaofToestimatePRF(0and1)fromainfromthepopulation,thenforeachobservationthissample,itwillbethecaseyi=0+1xi+uiistheerrortermforobservationy1=0+1x1+u1y2=0+1x2+yn=0+1xn+yx48Populationregressionline,sampledatapointsandtheassociatederrortermsy: E(y|x)=0+ u } x:study use?asestimatorofuse?asestimatorof,?asestimatorof forobservationiinasample,givenxi,we1 1y: 1u?yy?y?? 1 SRF:y?? y3 .} ?2 } x4 PRFandi PRF:E(yx)E(yxiiE(yx ?:estimatorof,?:estimatorofxStudyGrantedthattheSRFisonlyanapproximationofPRF,givenasample,canwedevisearuleoraasThatis,the?sinSRFshouldbeas“close”aspossibletotruevalues’sintherelevantPRFeventhoughwewillneverknowthe’sandPRF.y: u?iyiy?iyi??min } } StudyOLSmethod:fitasampleregressionlinethroughthesamplepointssuchthatthesumofsquaredresidualsisassmallasthetermofy=0+1xy=0+1x+ “regressyony: x:studyhoursper0and1,thenfittedvaluesofyandTheleast-squarescriterion最小二乘標準nMinu?2(yy?)2(y??xi1 1yi,xiareknownsampleFirstordercondition(FOC)一階條件 (??i2(y??x)?0(y??x) 1 10 (?x i2(y??x 1i(yx)x 1 1i thesameasequations(2.14)and(2.15),multipliedbyu?i0,u?ixi?y? xxyy ? x,y xprovidedthatxx0x??:OLSestimators最小二乘估計量ofSRF:y???andu?yEstimate估計值:aparticularnumericalvalueobtainedbytheestimatorinanspecificsample.yx48EXAMPLEEXAMPLE2.3:CEOSalaryandReturnonstudytherelationshipbetweenthismeasureoffirmperformanceandCEOcompensation,wethesimplesalary=0+1roe+u.x:theaveragereturnequity(roe)fortheCEO’sfirmforthepreviousthreeyears.(roeisdefinedintermsofnet easapercentageofcommonequity.)209CEOsfortheyear1990;thesedatawereobtainedfromBusinessWeek(5/6/91).UsingOLSmethodand(2.17)and(2.19),getsal?ary=963.191+18.501Ifroe=0,thepredictedsalaryistheinterceptsal?ary=WeWewillneverknowthePRF,sowecannotlhowclosetheSRFistothePRF.Anothersampleofdatawillgiveadifferentregressionline,whichmayormaynotbeclosertothePRF.YoucanusecomputersoftwarepackagetomakeestimationwithoutcomputingthembyhandThismodelmaybetoosimple,sincetherearemanyotherfactorsthataffectsalarybesidesroe.SRFbasedontwodifferent roe,MoreMoreyiy?iu?ian Canproveyy2y?y2 SSE SSTthetotalsumofsquaresSSE:theexinedsumofsquares解釋平方SSR:theresidualsumofsquaresyiyTotalyi y?iy Goodness-of-FitGoodness-of-FitR-squared(coefficientofdetermination判定系數(shù)):thefractionofthesamplevariationinycanbeR2=SSE/SST=1–0R2IfR2=1,allsamplepointsareonsampleregressionlineIfR2=0,poorfitofExample2.3:CEOSalaryandReturnonsal?ary=963.191+18.501n=209,R2=roeexinsonlyabout1.3%ofthevariationinsalariesforthissampleof209CEOs.Inthesocialsciences,lowR2inregressionequationsarenot mon,especiallyforcross-sectionalysis,anddon’tmeantheseSRFsarecannotuseR2tojudgewhetheraneconometricysisissuccessfulornotSmallexnatorypowermaybecausedbyotherfactors(inu)thatinfluencesalary. 2.5ExpectedValueandVarianceofOLS2.5ExpectedValueandVarianceofOLS and1thatappearinthepopulationstudypropertiesofthedistributionsof?and Givenaparticularsample,they particularvalues.forsimplelinearregression.SLR.1:linearinparametersasy=0+1x+uSLR.2:userandomsampling,{(xi,yi):i=1,2,…,n},fromthepopulationmodelyi=0+1xi+SLR.3:E(u|x)=0E(ui|xi)=SLR.4:x’sarenotconstants. xixGiventheabove4 EourestimatoriscenteredaroundthetrueparameterE(?)isE(?|x),E(?)isE(?|x) UnbiasednessTheOLSestimatorsof1and0are E(?),E(?)Proofofunbiasednessdependsonour4assumptions–ifanyassumptionfails,thenOLSestimatorsisnotnecessarilyRememberunbiasednessisadescriptionoftheestimator–inagivensamplewemaybe“near”or“far”fromthetrueparameter?,? 0 VarianceofVarianceoftheOLS--MeasurehowthesamplingdistributionofourestimatorspreadoutaroundthetrueparameteranadditionalassumptionVar(u|x)=2(Homoskedasticity同方差CanproveVar(u|x)=Var(u)--Var(u|x)isalsotheunconditionalvariance,calledtheerrorvariance誤差項方差,thesquarerootoftheerrorvarianceiscalledthestandarddeviationoftheerrorterm誤差項標準差alsohave:E(y|x)=0+Var(y|x)=Var(u|x)= 2 Var1(xix)2 SSTx(xix (xxisd? xVar?isVar?|x,Var?isVar?|x VarianceofOLSSlopeEstimator?1Thelargertheerrorvariance,2,thelargerthevarianceoftheslopeestimatorThelargerthevariabilityinthexi,thesmallerthevarianceoftheslopeestimatorAsaresult,alargersamplesizeshoulddecreasethevarianceoftheslopeestimateProblem:theerrorvariance2isunknownbecausewedon’tobservetheerrortermsuiGivenSLR.1-?21u?2SSR/n n2:degree dom(df)in(giventhe2restrictionsofOLSFOCsonu?i x Similarly,cancomputese?02.42.4UnitsofMeasurementandFunctionalEffectsofchangingunitofmeasureonOLSestimatorsExample2.3:salary=0+1roe+u. .1roedecroedecroe R2doesn'tchangeinboth unitsof therateofchangemeasuredinunitsofthe1unitsofInoriginalcase,?1Ifxchangesbyoneunit,ychangesby$1000oIfx=0,y?=963.191i1000=Incase1,?18,1Ifxchangesbyoneunit,1%,ychangesby$18,501Ifx=0,y?=$963,191Incase2,?1Ifxchangesbyoneunit,ychangesby$10001850.10.01=$18,501Ifx=0,y?=963.191i1000=$963,191Thetworesultsareidenticalintheireffectsofxonyy=0+1x+y=0+1logx+logy=0+1x+or%y= TheMeaningof“Linear”--Linearityinthe’sappearwithapowerorindexof1onlyandismultipliedordividedbyanyother--mayormaynotbelinearinthey=0+1x2+y0+1xu,y0+1/0xu,y0+01xy=0+1 yisalinearfunctionof--xappearswithapowerorindexof1onlyandisnotmultipliedordividedbyanyothervariable.y0+1x,y0+1(x/z),y0+1(xByredefiningyandx,wecanturnsomemodelsy=0+1Modellinearin Modellinearin Note:LRM=linearregressionmodelNLRM=nonlinearregressionmodelExampleExample2.10:log-level(semi-Whenu=lety=log(wage),x=educ,alinearmodel,stillusen526,R2Here0doesnotmakeAnincreasingreturnoneducwithu=Example2.11:log-log(constant-CEOsalaryandfirmsalary/salary=1(or%salary=1%Ifsalesby1%,salaryby1lety=log(salary),x=log(sales),alinearmodel,stilluseOLSn209,R2Ch.3MultipleCh.3Multiple 1y=0+1x1+2x2+...kxk+thekfactorsthataffecty:xj(thek+1parameter:j(j=0,1,2,...,k)intercept0andslopeparameters1toku:errorterm,unobservable--allfactorsinuareuncorrelatedwithx’s(ceteris2MLR:MLR:y=0+1x1+2x2+...kxk+--morerealisticandflexiblethanSLR:y=0+1x1+Example:theeffectofeducationonhourlywage=0+1educ+2exper+ morerealisticthanSLR:wage=0+1educ+--morevariationinyisexIfuwage=1educ+2Example:aquadraticcons=0+1inc+2inc2+ cons=1inc+22inc--MLRmodelallowsformuchmoreflexibilityinfunctional3PRFandSRF(parallelwiththoseofPRF:E(y|x)=0+1x1+2x2+...SRF:y???x?x...? 1 2 ku?yy?y(??x?x...?x 1 2 kTerminology:“Regressyonx1,x2,…xk”or“runregressionofyonx1,x2,…xk”4u?yy?y(??x?x...?x 1 2 kOLS:minu?2(y??x?x...?x 1 2i kFOCs 5n(y??x?x...?x) 1 2i kin1x(y??x?x...?x)i1 1 2i kx(y??x?x...?x) i2 1 2i k(y??x?x...?x)i1 1 2i ki1,2,...,nobservationj0,1,2,...,kdistinguishdifferentxand601 Note:nk7uy1x12x2...kxk holdingx2,...,xkfixed,y eachjmeasuresapartialeffect(ceterisparibus)ofxjony.1 2 k8thetotalsumofsquares(SST):yyithe inedsumofsquares(SSE):y?yitheresidualsumofsquares(SSR):iSSTSSER2SSE/SST1 0R21thefractionofthetotalsamplevariationofythatisexinedbythemodel9Whenanotherxisaddedtoamodel,R2canneverdecreaseandusuallywillincrease(becausewhenanotherxisadded,SSRdoesnotincreaseandSSTdoesnotchange).Soitisnotagoodwaytocomparemodelsanddecidewhetheronexorseveralx’sshouldbeaddedtoamodelornot.--evenifsuchx’sarenotrelatedtoy,theycanstillincreaseR2Tomakesuchdecision,statisticaltestsaremore Squaredcorrelationcoefficientyiyyy?y?R2 2yy2y?y? Example3.1and3.4:ModelofCollegecol?GPA1.290.453hsGPA0.0094ACTn141,R20.176ACT:achievementtestscoreInterceptdoesn’tmakesensehsGPAandACTtogetherexinabout17.6%ofthevariationincolGPAmanyotherfactors,suchasfamilybackground,forcollege,contributetoastudent’scollegey1x1y1x12x2"kxkunointerceptSRF:yxx"x(3.30)1 2 kstilluseOLSmethod,butformularsareR21SSR/SST,SSRu?2(yxx...x 1 2i kR2canbeR2 Ifthereisnostrongprioriexpectationthat0=0,weshouldincludetheintercept,orelseOLSwillbebiasedreturnandtheBetacoefficient(CAPM).ER-rf=1(ERm-rf)+ER:expectedrateofreturnonsomerf: rateofERm:expectedrateofreturnonthemarket1:theBetacoefficient,ameasureofsystematicrisk,ER–rf:expectedriskpremiumonsecurityERm–rf:expectedmarketrisk3.33.3TheExpectedValueoftheOLS--parallelto2.5onSLRmodelAssumptionsofMLRMLR.1linearinModel:y=0+1x1+2x2+…+kxk+witharandomsampleofsizen,{(xi1,xi2,…,xik,yi)foreachobservationi(i=1,2,…,n)yi=0+1xi1+2xi2+…+kxik+Noneofthex’sisconstant,andtherearenoexactlinearrelationshipsamongthem01x1i2x2i...kxki0notallconstant's=0E(u|x1,x2,…xk)=implyingthatallx’sareThereasonsthatMLR.3doesnotanyofx’s.Theorem3.1:UnbiasedofOLSUnderMLR.1-4:E(?j) j0,1,...,meansthatthesamplingdistributionofOLSestimatorsiscenteredaroundthetrueparameter3.43.4VarianceoftheOLSVar(u|x1,x2,…,xk)=Var(y|x1,x2,…,xk)=GiventheGauss-MarkovAssumptionsMLR.1-5 sd?SST1R21 j SSTjxijxjR2:theR2fromregressingxonallother R:x1= +2R:x1= +2x2+3x3+...+kxk+ 1 3 kR:x=+x+x+x+...+x+ 1 2 3 k-1k-v:errortermintheauxiliary’s:parametersintheauxiliaryAlargeVar(?)meansalessprecisejlargerconfidenceintervalsandlessaccuratehypothesesNotknow2,becauseui’sareunobservable.use?iasestimatorofuiu?iyiy?iyi??xi1?xi2...? idegree dom(df):nk1n#of'Theorem3.3:unbiasedestimationof2UndertheGauss-MarkovAssumptionsMLR.1- j j SSTj1j12?andse?arenotvalidestimatorofandsd? Var? j If2,var(?)jmore“noise”intheequation(alarger2)makesitmoredifficulttoestimatethepartialeffectofanyxy,whichisreflectedinhighervariancesoftheOLSslopeestimators;Foragiveny,thereisonlyonewaytoreducetheerrorvariance:addmorex’stotheequation(takesomefactorsoutofu).;Thisisnotalwayspossible,norisitalways(2)TheTotalSampleVariationinxj,Ifthetotalvariationinxj,thatisSSTj,var(?)jeverythingelsebeingequal,prefertohaveasmuchsamplevariationinxjaspossible;Giveny=0+1x1+2x2+...+kxk+Rj:R-squaredfromanauxiliaryregressionofxjonotherx’s,measuringtheproportionofthetotalvariationinxjthatcanbe inedbytheotherR2:x= +x+x+...+x+ 2 3 kR2:x2=0+1 +3x3+...+kxk+2R2:x=+x+x+x+...+x+ 1 2 3 k-1k-Anintercept0shouldbealwaysincludedintheauxiliaryregression.jxx...x 1 2 kj01X1i2X2i...kXkivixjandotherx'sarecorrelatedinthejProblemProblemofMulticollinearity:usuallyrefertocorrelationbetweentwoormoreofthex’s,nocleardefinition0R2jproblemonsampledataofx,butnotonpopulationIfR2,var(?) 0R2 cons=0+1inc+2inc+inc2isnotanexactlinearfunctionof x3i=5x2iimperfectmulticollinearitybetweenX2andX3x*=x+v=5x wherev=2,0,7,9, 3i 2i rightway:collectmorewrongway: avariablethatbelongsinpopulationmodel,whichcanleadtovariousdegrees.Ifthenumberofx’sincreases,thepossibilityofmulticollinearityincreasestoo.ExpendituresonExpendituresonteachersalaries,instructionalmaterials,athletics,etc.maybehighlycorrelatedsincewealthierschoolstendtospendmoreeverything,andpoorerschoolsspendlessonThisleadstohighR2foreachoftheexpenditure ItisdifficulttoestimatetheeffectofanyparticularexpenditurecategoryonstudentperformanceSuchmulticollinearityproblemscanbemitigatedbycollectingmoredata,orsumthemtogethertostudythetheeffectoftotalexpenditureonstudentExample:y=0+1x1+2x2+3x3+Ifx2andx3arehighlycorrelated,butx1isuncorrelatedwithx2andx3 1ahighdegreeofcorrelationbetweencertainx’scanbeirrelevantastohowwellwecanestimateotherparametersinthemodel.modeleventhoughtheyhavenopartialeffectony(i.e.their’sare0).--underspecifying:excludeaorseveralx’sinthemodeleventhoughtheyhavepartialeffectony(i.e.their’sarenot0)SimpleExample:Truemodel:y=0+1x1+ Wrongmodel:y=0+1x1+2x2+u(2=0)'noeffectontheparameterestimates,andOLSestimatorsremainsunbiasedE(?),E(?),E(?) ButhaveundesirableeffectonthevariancesofOLSVar(?)2/[SST(1R2)],Var()2/ Ifx1andx2arecorrelated,Var()Var(? IfIf2=0,x2doesnothaveapartialeffectony,thenincludingitinthemodelcanonlyexacerbatetheefficientestimatorof1truemodel:y=0+1x1+2x2+u(3.40)?' regressx2onx1:x2 PRF:x201x1 1E 2Onlyif2=0or=0(xandxareuncorrelatedin 2 truetruemodel:yxx...x 1 2 kifexcludexk:y01x12x2...k1xk1 xk01x12x2...k1xk1 'E(j)jk j Onlyifk=0orj=0(xkandxjareuncorrelatedinsample),thenEjjomittedvariablebias:kjEjExample:Example:3.2&3.6ModelofHourlylog(?wage)0.5840.083educDataset:526workersinWAGE1.RAW,educ:yearsofeducationexper:yearsoflabormarketexperiencetenure:yearswiththecurrentSimpleExample:truemodel:y=0+1x1+2x2+u(3.40)?' Var1 Var1 Ifx1andx2arecorrelated,VarVar? Ifx1andx2areuncorrelated,VarVar? If20,x2doeshaveapartialeffectony,thenexcludingitinthemodelresultsinabiasedOLSestimatorbutamoreefficientvarianceestimatorof1 AssumptionsMLR.1-5,theOLSestimatorjnjijlineariny:? w (3.59fromunbiased:E(?)jbest:efficient(smallestvariance)Var(?)Var( E(?)) var(?j)jjjjThecriticalquestioninGrantedthattheSRFisonlyanapproximationofthePRF,givenasample,canwedevisearuleoramethodthatwillmakethisapproximationas“close”Thatis,the'sinSRFshouldbeas“close”possibletotruevalues’sintherelevantPRFeventhoughwewillneverknowthe’sandPRF.--UnderMLR.1-5,theOLSestimatorsinSRFshouldbeas“close”aspossibletotruevalues’sintherelevantPRF,thatis,theywillmakethisapproximationas“close”aspossible.Ch.4:Multiple ysis:1 Ch.4:Multiple ysis:1OLSisBLUE.Inordertodostatisticaltest,weneedtoaddanotherMLR.6:uisindependentofx1,x2,…,xkanduisnormallydistributedwithzeromeanandvariance2:u~2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆交通職業(yè)技術學院《機器視覺技術》2023-2024學年第一學期期末試卷
- 二零二五年度高新技術企業(yè)員工技術勞務合同范本3篇
- 2024版商業(yè)租賃協(xié)議標準版版A版
- 二零二五版廣東省土地估價師協(xié)會土地估價師行業(yè)專業(yè)論壇合同3篇
- 二零二五版健身中心場地租賃及健身賽事舉辦合同3篇
- 二零二五年度個人合伙房地產(chǎn)合作開發(fā)合同樣本3篇
- 專業(yè)級2024型材料供銷協(xié)議3
- 天津工藝美術職業(yè)學院《電氣工程綜合實踐》2023-2024學年第一學期期末試卷
- 泰山科技學院《工作坊》2023-2024學年第一學期期末試卷
- 蘇州科技大學《韓非子》2023-2024學年第一學期期末試卷
- 2025寒假散學典禮(休業(yè)式)上校長精彩講話:以董宇輝的創(chuàng)新、羅振宇的堅持、馬龍的熱愛啟迪未來
- 安徽省示范高中2024-2025學年高一(上)期末綜合測試物理試卷(含答案)
- 安徽省合肥市包河區(qū)2023-2024學年九年級上學期期末化學試題
- 《酸堿罐區(qū)設計規(guī)范》編制說明
- PMC主管年終總結報告
- 售樓部保安管理培訓
- 倉儲培訓課件模板
- 2025屆高考地理一輪復習第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標準
評論
0/150
提交評論