




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
光線光學(xué)演示文稿當(dāng)前1頁,總共40頁。(優(yōu)選)第一講光線光學(xué)當(dāng)前2頁,總共40頁。1、反射定律根據(jù)這一原理,馬上可知在均勻媒質(zhì)中,光線是直線,即光的直線傳播定律。費(fèi)馬原理是幾何光學(xué)的理論基礎(chǔ),從它可以導(dǎo)出幾何光學(xué)的全部定律。例如:
作AC⊥M,AC=CD,P是BD線與平面鏡面的交點(diǎn)。所以P點(diǎn)位于平面ACDB內(nèi)。根據(jù)費(fèi)馬定理,APB<AQB,實(shí)際光線APB是極小值,因此DPB是一條直線,AP=PD。當(dāng)前3頁,總共40頁。2、折射定律(斯涅耳定律)這個(gè)定律是于1621年由W.Snell從實(shí)驗(yàn)上發(fā)現(xiàn)的,又:故光程為極小值。當(dāng)反射或折射面不是平面而是曲面時(shí),反射定律和折射定律同樣成立。當(dāng)前4頁,總共40頁。3、物像之間的等光程性——光程取恒定值4、凹球面鏡反射——光程取極大值設(shè)A、B為橢球面的兩個(gè)焦點(diǎn),球面在橢球面內(nèi)部,并相切于P點(diǎn),光線為APB(滿足反射定律),易證APB=ARB>AQB,故光線比相鄰的路程要大,即光程取極大值。當(dāng)前5頁,總共40頁。費(fèi)馬原理與哈密頓原理都是變分原理,形式上相似。本章將根據(jù)費(fèi)馬原理推得描述光線傳播路徑的方程,并且把分析力學(xué)中的一套研究質(zhì)點(diǎn)運(yùn)動(dòng)軌跡的方法搬到光學(xué)中來,這種方法稱為哈密頓光學(xué)。哈密頓光學(xué)適用研究光在折射率分布(非均勻)的媒質(zhì)中的傳播。
經(jīng)典力學(xué)中的哈密頓原理為(參考《理論力學(xué)教程》周衍柏P.309):其中L為拉格朗日函數(shù),L=T-V是力學(xué)體系的動(dòng)能與勢能之差。從哈密頓原理可推出拉格朗日方程:§1-2哈密頓光學(xué)一、光線微分方程當(dāng)前6頁,總共40頁。其中——廣義坐標(biāo),其中——廣義坐標(biāo)。由費(fèi)馬原理:
光學(xué)拉格朗日函數(shù)定義為:
于是()式可寫為:
稱為光學(xué)哈密頓原理。
當(dāng)前7頁,總共40頁。光學(xué)拉格朗日方程為:
把()式代入,得:
同理:
光線方程當(dāng)前8頁,總共40頁。在近軸情況下:
,光線方程變?yōu)椋豪霉饩€方程可以求出各種介質(zhì)中光線的性質(zhì)。舉例如下:(近軸光線方程)此時(shí)n為常數(shù),
,代入(1.2.10)式,得到:上式是直線方程,因此在均勻媒質(zhì)中,光線的形狀是直線。設(shè)折射率分布為,與z無關(guān)。利用近軸光線方程,有:1、均勻介質(zhì)2、自聚焦介質(zhì)當(dāng)前9頁,總共40頁。把折射率分布代入,有
,解之,得:類似地,有:系數(shù)
由初始條件(入射點(diǎn)和入射方向)決定。如入射點(diǎn)在,方向角為時(shí),光線是周期為的子午光線,光線被限定在平面內(nèi)。入射點(diǎn)和方向角取適當(dāng)值時(shí),光線以螺旋形式傳播,它距軸為恒定距離。當(dāng)前10頁,總共40頁。∴光線方程可寫為:為光線切線方向的單位矢量。對(duì)具有徑向?qū)ΨQ的媒質(zhì),沿著方向。于是:3、球面對(duì)稱介質(zhì)當(dāng)前11頁,總共40頁。這意味著所有光線都是平面曲線,所在平面皆通過原點(diǎn)O,并且沿每條光線也即nd=常數(shù)——布給(Bouguer)公式。它與質(zhì)點(diǎn)在中心力場中運(yùn)動(dòng)時(shí)角動(dòng)量守恒形式類似。由幾何關(guān)系有(見《光學(xué)原理》上冊(cè)P.167):代入()式,有:當(dāng)前12頁,總共40頁。4、麥克斯韋魚眼把n(r)代入(1.2.20)式中,并令:其中是常數(shù),折射率只是徑向坐標(biāo)r的函數(shù)。從某一物點(diǎn)發(fā)出的所有光線匯交在同一象點(diǎn)上。證明如下:其中c為()式中的常數(shù),可得:積分得:當(dāng)前13頁,總共40頁。其中a為積分常數(shù),即:上式為麥克斯韋魚眼中的光線方程。通過的曲線簇為:從上式可以看出,這些曲線都通過點(diǎn),其中,所以來自一個(gè)任意點(diǎn)的所有光線,均相交于點(diǎn)到O連線上的點(diǎn):和分別在O的兩邊,并且。當(dāng)前14頁,總共40頁。因此,魚眼是一種理想成像,也稱絕對(duì)儀器。又和兩點(diǎn)是滿足光線方程(1.2.24)的,因此每一條光線與固定圓相交于一直徑的兩端A,B(對(duì)不同的光線A,B點(diǎn)不同)。把極坐標(biāo)變換到笛卡爾坐標(biāo)中:()式可化為:式是:()式表示魚眼中每一條光線都是一個(gè)圓。從魚眼中的光線可以看出,光線彎向折射率高的一邊,對(duì)一般情況也可證明(《光學(xué)原理》P.168)當(dāng)前15頁,總共40頁。在分析力學(xué)中,除了用拉格朗日方程來描述力學(xué)系統(tǒng)的運(yùn)動(dòng)規(guī)律外,還有哈密頓正則方程。其形式簡單而對(duì)稱,更加抽象、概括,而且易于向量子力學(xué)過渡。類似地光線光學(xué)中除了光學(xué)拉格朗日方程外,也可推得光學(xué)哈密頓正則方程,形式簡單而對(duì)稱,更加抽象概括,易于向波動(dòng)光學(xué)過渡。
二、哈密頓正則方程當(dāng)前16頁,總共40頁。其中拉氏函數(shù)定義光學(xué)廣義動(dòng)量:其中是光線在點(diǎn)沿方向的方向余弦,稱為光方向余弦。當(dāng)前17頁,總共40頁。定義光學(xué)哈密頓函數(shù):根據(jù)拉氏方程,及廣義動(dòng)量的定義有:作變量代換,光學(xué)拉格朗日函數(shù)的微分為:當(dāng)前18頁,總共40頁。對(duì)比()和()有:∴H為的函數(shù):()式稱為哈密頓正則方程。給定哈密頓函數(shù)H,便可計(jì)算光路。為了便于寫出H,一般用折射率及光學(xué)方向余弦(廣義動(dòng)量)來表示。當(dāng)前19頁,總共40頁。這就是相對(duì)論光學(xué)哈密頓函數(shù)的表達(dá)式。在力學(xué)中對(duì)穩(wěn)定約束系統(tǒng)H等于力學(xué)體系的總動(dòng)量。三、哈密頓正則方程在近軸光學(xué)中的應(yīng)用對(duì)于旋轉(zhuǎn)對(duì)稱系統(tǒng),設(shè):則:把H作泰勒展開,得:當(dāng)前20頁,總共40頁。在近軸近似下,H取到u,v的一次方項(xiàng)(高階項(xiàng)對(duì)應(yīng)于象差),由哈密頓正則方程,有:其中:其中:當(dāng)前21頁,總共40頁。例1:單折射球面球面方程:當(dāng)前22頁,總共40頁。例2:薄透鏡四、程函方程對(duì)于薄透鏡可得:程函(eikonal)是一個(gè)十分重要的物理量。標(biāo)量波動(dòng)方程為:其中表示電場的某一分量,。設(shè)()的解為:其中是x,y,z的緩變實(shí)函數(shù),把()式代入()式,得:從實(shí)部得:當(dāng)前23頁,總共40頁。在的條件下(或是x,y,z的緩變函數(shù),),有:(1.2.46)式稱為程函方程,它是幾何光學(xué)的基本方程。其中L為程函,表示波前(波陣面),即等位相曲面。例:從程函方程導(dǎo)出光線方程定義:光線——幾何波陣面L=常數(shù)的正交軌線。由程函方程:當(dāng)前24頁,總共40頁。在上面的推導(dǎo)中用到了程函方程和微分關(guān)系:當(dāng)前25頁,總共40頁。波動(dòng)光學(xué)的基本方程
其中:n——介質(zhì)的折射率,c——真空中的光速
——光波的電場分量§1-3幾何光學(xué)與波動(dòng)光學(xué)的過渡一、波動(dòng)光學(xué)過渡到幾何光學(xué)設(shè)上述波動(dòng)方程解的形式為:其中:——振幅,——程函,當(dāng)前26頁,總共40頁。代入波動(dòng)方程得:如果波長很小,則在波長的數(shù)量級(jí)內(nèi),折射率平緩變化,因而振幅因子中的也平緩變化。所以當(dāng)時(shí),(1.6.7)化為:當(dāng)前27頁,總共40頁。
S=常數(shù)的曲面叫做波面,其正交曲線就是幾何光學(xué)中的“光線”,光線的方向余弦應(yīng)為,即。在均勻媒質(zhì)內(nèi),n為常數(shù),,意指波面的形狀不變,光線沿直線傳播。當(dāng)前28頁,總共40頁。在非均勻媒質(zhì)內(nèi),與位置有關(guān),波面形狀要發(fā)生變化,而光線沿波面法向傳播,光線必然彎曲。由程函方程可推得光線方程:由波動(dòng)光學(xué)的波動(dòng)方程出發(fā),在的近似條件下可得到幾何光學(xué)的程函方程,進(jìn)而可推得光線方程,可見幾何光學(xué)是波動(dòng)光學(xué)在的極限情形。二、幾何光學(xué)到波動(dòng)光學(xué)波動(dòng)光學(xué)幾何光學(xué)波動(dòng)力學(xué)(量子力學(xué))經(jīng)典光學(xué)當(dāng)前29頁,總共40頁。經(jīng)典力學(xué)中的力學(xué)量量子力學(xué)中要用算符表示動(dòng)量算符哈密頓算符薛定諤方程即:是波函數(shù),德布羅意波波長當(dāng)前30頁,總共40頁。幾何光學(xué)中,與經(jīng)典力學(xué)中動(dòng)量對(duì)應(yīng)的是廣義動(dòng)量,或稱光方向余弦。類比于量子力學(xué)的動(dòng)量算符表示,把光方向余弦用算符表示:取光線傳輸方向z為“時(shí)間”參量,有:光學(xué)哈密頓函數(shù)算符化:當(dāng)前31頁,總共40頁。由對(duì)應(yīng)關(guān)系,可以直接寫出類似的光學(xué)薛定諤方程:由此式出發(fā)可推出波動(dòng)光學(xué)的基本方程——波動(dòng)方程。用光學(xué)哈密頓算符作用于上式,得:即:把代入上式,得:當(dāng)前32頁,總共40頁。三、光線量子力學(xué)理論1、光場流線結(jié)構(gòu)模型不含時(shí)間的波動(dòng)方程:對(duì)比以上二式,可見:可見g的作用的確類似于量子力學(xué)中的。當(dāng)波動(dòng)光學(xué)的,也即時(shí),就過渡到幾何光學(xué)。光纖通訊、集成光學(xué)—→光線量子化理論,適用于限制在有限厚介質(zhì)薄膜中定向運(yùn)動(dòng)的光場量子化。當(dāng)前33頁,總共40頁。在介質(zhì)薄層內(nèi)傳輸?shù)墓鈭鍪怯梢皇貍鬏敺较虻臒o窮多幾何流線構(gòu)成。這束光流線具有波線雙重屬性。(1)在光傳輸方向上的橫截面上,流線的密度由光場強(qiáng)度確定;(2)光流線的線跡遵守幾何光學(xué)的費(fèi)馬原理;(3)光流線的結(jié)構(gòu)模型既不否定光的波動(dòng)性,也不否定光的粒子性,而且具有雙重性的本質(zhì)。用光流線模型研究光在致密介質(zhì)中的傳輸特性可以不必過分地追究細(xì)微的光子量子,也不必過分地追究分解元波,只用二個(gè)獨(dú)立的空間位移坐標(biāo)(x,y)和三個(gè)角度參量(流線與傳輸方向夾角)來描述流線運(yùn)動(dòng)。當(dāng)前34頁,總共40頁。2、光線力學(xué)的原理從幾何光學(xué)的基本原理出發(fā),對(duì)光場作出力學(xué)理論的描述稱為光線力學(xué),實(shí)際上為哈密頓光學(xué)。費(fèi)馬原理:拉氏函數(shù)廣義動(dòng)量光線哈密頓函數(shù)取傍軸近似,在近軸情況光學(xué)哈密頓將向非相對(duì)論的情況過渡,對(duì)(1.6.25)式作級(jí)數(shù)展開,取一級(jí)近似,可得:當(dāng)前35頁,總共40頁。對(duì)比經(jīng)典力學(xué)其中是常數(shù),它與n的關(guān)系為:傍軸光線近似非相對(duì)論力學(xué)非傍軸光線力學(xué)相對(duì)論經(jīng)典力學(xué)折射率n相當(dāng)于勢阱“光線折射率勢阱”當(dāng)前36頁,總共40頁。3、光線量子力學(xué)的基本原理在光線力學(xué)的基礎(chǔ)上,接量子力學(xué)的一般原則,對(duì)力學(xué)量量子化,可以得到光線量子力學(xué)的基本問題。引進(jìn)光線量子常數(shù)取光線傳輸方向Z為“時(shí)間”參量,對(duì)力學(xué)量算符簡化,有:(1)坐標(biāo)(2)動(dòng)量(3)哈密頓量(4)非相對(duì)論哈密頓算符當(dāng)前37頁,總共40頁。由算符的等價(jià)性,得:即:光線相對(duì)論量子力學(xué)方程,也稱K-G方程。標(biāo)量波動(dòng)方程光線量子力學(xué)中的光線流:具有波粒二象性的流線。表示在ds面元上光線流的幾率密度。當(dāng)前38頁,總共40頁。近軸光線量子力學(xué)方程——非相對(duì)論量子力學(xué)方程取平面波為試探光流線分布函數(shù)相對(duì)論量子力學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥咨詢采購合同范本
- 倉儲(chǔ)貨架合同范本
- 勞動(dòng)合同范本醫(yī)療
- 會(huì)計(jì)臨聘用合同范本
- 展廳工程合同范本
- 出貨協(xié)議合同范本
- 義賣贊助合同范本
- 北京和杭州租房合同范本
- 勞務(wù)用工勞務(wù)合同范本
- 出售高端養(yǎng)老房合同范例
- 電子商務(wù)數(shù)據(jù)分析基礎(chǔ)(第二版) 課件 模塊1、2 電子商務(wù)數(shù)據(jù)分析概述、基礎(chǔ)數(shù)據(jù)采集
- YB-T+4190-2018工程用機(jī)編鋼絲網(wǎng)及組合體
- 高大模板安全施工施工安全保證措施
- 比亞迪公司應(yīng)收賬款管理的問題及對(duì)策分析
- 【高考真題】2024年新課標(biāo)全國Ⅱ卷高考語文真題試卷(含答案)
- 委托辦理報(bào)廢汽車協(xié)議書
- 旅游服務(wù)質(zhì)量評(píng)價(jià)體系
- 義烏市建筑工程質(zhì)量通病防治措施100條(2022版本)
- 蘇教版(SJ)《四年級(jí)下冊(cè)數(shù)學(xué)》補(bǔ)充習(xí)題
- 體育足球籃球排球體操教案
- 統(tǒng)編版高中政治必修3必背主觀題
評(píng)論
0/150
提交評(píng)論