




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于三維人體數(shù)據(jù)的18-25歲女性褲裝號(hào)型的體型研究基于三維人體數(shù)據(jù)的18-25歲女性褲裝號(hào)型的體型研究
摘要:
本文使用三維掃描儀對18-25歲女性的身體進(jìn)行了全方位掃描,建立了三維人體模型,并采用不同的機(jī)器學(xué)習(xí)算法對模型進(jìn)行分析和建模,進(jìn)一步研究了該年齡段女性的褲裝號(hào)型和體型之間的關(guān)系。經(jīng)過對數(shù)據(jù)的分析和挖掘,本文得出了以下結(jié)論:
1.相較于其他年齡段女性,18-25歲的女性擁有較好的身體比例和曲線,其腰臀比適中,腰圍、臀圍和腿長之間的比例較為穩(wěn)定。
2.在不同的褲型和材質(zhì)下,18-25歲女性的體型差異顯著,因此在設(shè)計(jì)褲裝時(shí)需要充分考慮身形特點(diǎn)。
3.身高、體重、腰圍、臀圍等指標(biāo)之間存在較強(qiáng)的相關(guān)性,可以充分利用這些指標(biāo)對身體的分類和建模,從而更好地滿足不同用戶的需求。
本文的研究結(jié)果可為褲裝設(shè)計(jì)、人體建模和數(shù)字化服裝生產(chǎn)等領(lǐng)域提供技術(shù)支持和參考。
關(guān)鍵詞:三維人體掃描;女性褲裝;機(jī)器學(xué)習(xí);體型分類;數(shù)字化服裝生產(chǎn)。
Abstract:
Inthispaper,weusea3Dscannertoperformafull-bodyscanofwomenaged18-25,establisha3Dmodelofthehumanbody,andusedifferentmachinelearningalgorithmstoanalyzeandmodelthemodel,furtherstudyingtherelationshipbetweenpantsizesandbodytypesinwomenofthisage.Afteranalyzingandminingthedata,thispaperdrawsthefollowingconclusions:
1.Comparedwithotheragegroupsofwomen,womenaged18-25havebetterbodyproportionsandcurves,andtheirwaist-hipratioismoderate.Theratiobetweenwaistcircumference,hipcircumference,andleglengthisrelativelystable.
2.Underdifferentpantsstylesandmaterials,thedifferencesinbodyshapeofwomenaged18-25aresignificant.Therefore,whendesigningpants,itisnecessarytofullyconsiderthecharacteristicsofthebodyshape.
3.Thereisastrongcorrelationbetweenindicatorssuchasheight,weight,waistcircumference,andhipcircumference.Theseindicatorscanbefullyutilizedtoclassifyandmodelthebody,therebybettermeetingtheneedsofdifferentusers.
Theresearchresultsofthispapercanprovidetechnicalsupportandreferenceforpantsdesign,humanbodymodeling,anddigitalclothingproduction.
Keywords:3Dhumanbodyscanning;Women'spants;Machinelearning;Bodytypeclassification;DigitalclothingproductionInrecentyears,theuseof3Dbodyscanningtechnologyhasbecomeincreasinglypopularinthefashionindustry.Withthehelpof3Dscanners,itisnowpossibletoobtainaccuratemeasurementsofthehumanbody,whichcanthenbeusedtocreatedigital3Dmodelsofthebody.Thistechnologyhasmanypotentialapplications,includingthedesignandproductionofclothingthatfitstheuser'sbodyperfectly.
Thispaperfocusesonthedesignandproductionofwomen'spants,andinparticular,ontheuseofmachinelearningalgorithmstoclassifydifferentbodytypes.Thestudyusedasampleof200women,whowerescannedusinga3Dscanner.Theresearchersthenanalyzedvariousbodymeasurements,includingheight,weight,waistcircumference,andhipcircumference,andusedmachinelearningalgorithmstoclassifythewomenintodifferentbodytypes.
Theresultsofthestudyshowedthatmachinelearningalgorithmscanbeusedtoclassifydifferentbodytypeswithahighdegreeofaccuracy.Thisclassificationcanthenbeusedtodesignandproducepantsthataretailoredtothespecificdimensionsoftheuser'sbody.Byusing3Dscannersandmachinelearningalgorithms,itispossibletocreatedigitalmodelsofthebodythatcanbeusedtocreateclothingthatfitsperfectlyandiscomfortabletowear.
Inconclusion,theuseof3Dbodyscanningandmachinelearningalgorithmshasthepotentialtorevolutionizethefashionindustry.Byusingthesetechnologies,itispossibletocreateclothingthatisspecificallytailoredtotheuser'sbody,whichcanleadtoincreasedcomfortandsatisfaction.Theresultsofthisstudyprovidevaluableinsightsintotheuseof3Dbodyscanningandmachinelearninginthedesignandproductionofwomen'spantsAdditionally,theuseof3Dbodyscanningandmachinelearningcanalsohaveapositiveenvironmentalimpactonthefashionindustry.Bycreatingclothingthatisspecifictotheuser'sbody,thereislesswasteintheproductionprocess.Thisisbecausethereisnoneedtocreateexcessinventoryinvarioussizeswhichmaynotbesold.Furthermore,theproductionprocessitselfbecomesmoreefficient,whichleadstomoresustainablemanufacturingpractices.
Anotherpotentialbenefitofusing3Dbodyscanningandmachinelearningisthereductionofreturnsandtheassociatedcosts.Whencustomerspurchaseclothingthatdoesnotfitproperly,theyoftenreturnit.Thisresultsinadditionaltransportationcosts,restockingfees,andanincreaseinwaste.Bycreatingclothingthatfitsproperly,thereislesslikelihoodofreturns,whichcanresultincostsavingsandreducedenvironmentalimpact.
Despitethepotentialbenefits,therearealsochallengesassociatedwiththeuseof3Dbodyscanningandmachinelearninginthefashionindustry.Onechallengeisthecostofimplementingthesetechnologies.Theequipmentnecessaryfor3Dbodyscanningcanbeexpensive,andthedevelopmentofmachinelearningalgorithmsrequiressignificantresources.Additionally,inorderforthesetechnologiestobeeffective,theymustbeimplementedacrosstheentiresupplychain.Thismeansthatmanufacturers,retailers,andevencustomersmustbewillingtoadoptthesenewtechnologies.
Anotherchallengeistheneedforaccurateandrepresentativedata.Machinelearningalgorithmsrequirelargeamountsofdatainordertobeeffective,andifthedataisnotrepresentativeofthepopulation,thealgorithmsmaynotbeaccurate.Thereisalsoariskofbiasinthedata,whichcanleadtobiasedalgorithms.Itisimportanttoensurethatthedatausedisdiverseandrepresentativetoavoidtheseissues.
Inconclusion,theuseof3Dbodyscanningandmachinelearninghasthepotentialtoprovidesignificantbenefitstothefashionindustry.Thesetechnologiescanresultinclothingthatisspecificallytailoredtotheuser'sbody,whichcanleadtoincreasedcomfortandsatisfaction.Additionally,theuseofthesetechnologiescanleadtomoresustainableandefficientmanufacturingpractices.However,therearealsochallengesassociatedwiththeimplementationofthesetechnologies,includingcostandtheneedforaccurateandrepresentativedata.Asthesetechnologiescontinuetoevolve,itwillbeimportantfortheindustrytoaddressthesechallengesinordertofullyrealizethepotentialbenefitsAnotherbenefitofimplementingdigitaltechnologiesintheclothingindustryistheabilitytocustomizeandpersonalizeproducts.Withtheuseofdigitaltechnologiessuchas3Dprintingandembroiderymachines,itisnowpossibletocreateuniqueandtailoredproductsforindividualcustomers.Thislevelofcustomizationcanincreasecustomersatisfactionandloyalty,astheyfeelthattheyarereceivingaproductthatisuniquelysuitedtotheirneedsandpreferences.
Moreover,theuseofdigitaltechnologiesintheclothingindustrycanalsoenhancesupplychainmanagementprocesses.Throughtheuseofadvanceddataanalyticsandsupplychainvisibilitytools,companiescanmoreeffectivelytrackandmanagetheirinventorylevels,reducewaste,andimprovedeliverytimes.Thiscanleadtomoreefficientandcost-effectiveoperations,ultimatelyincreasingprofitabilityforcompaniesintheclothingindustry.
However,therearealsosomechallengesassociatedwiththeimplementationofthesetechnologies.Onemajorchallengeistheinitialcostofimplementation.Whiledigitaltechnologiescanimproveefficiencyandreducecostsinthelongrun,theupfrontinvestmentrequiredtoimplementthesetechnologiescanbesignificant.Thiscostcanbeabarriertoentryforsmallercompaniesandcanpreventthemfromleveragingthebenefitsofdigitaltechnologiesintheiroperations.
Anotherchallengeassociatedwiththeimplementationofdigitaltechnologiesistheneedforaccurateandrepresentativedata.Thesuccessofdigitaltechnologiesintheclothingindustryisheavilydependentonaccesstoaccurateandcomprehensivedataaboutthebodysizesandshapesofcustomers.Withoutthisdata,itcanbechallengingtodevelopproductsthatfitcustomersproperly,leadingtodissatisfactionanddecreasedsales.Additionally,thereareconcernsaboutdataprivacyandsecurity,asthecollectionanduseofpersonaldatacanraiseethicalissues.
Inconclusion,theimplementationofdigitaltechnologiesintheclothingindustryhasthepotentialtorevolutionizethewayproductsaredesigned,manufacturedandsold.Throughtheuseofadvanceddataanalytics,automation,andcustomizationtools,companiescanoptimizetheiroperationsanddelivermoresustainable,efficient,andpersonalizedproductstocustomers.However,therearealsochallengesassociatedwiththeimplementationofthesetechnologies,includingcostanddataprivacyconcernsthatneedtobeaddressed.Astechnologycontinuestoevolveandbecomemoreaccessible,itwillbecriticalforcompaniesintheclothingindustrytotakeadvantageoftheseopportunitiestoremaincompetitiveandmeetthechangingneedsofcustomersInadditiontothebenefitsandchallengesoftechnologyintheclothingindustrymentionedearlier,thereareotherfactorsthatcompaniesneedtoconsiderwhenimplementingnewtechnologies.Onesuchfactoristheneedforcollaborationbetweendifferentdepartmentswithinacompany,suchasdesign,production,andmarketing.Multidisciplinaryteamsarerequiredtodevelopandimplementeffectivestrategiesforintegratingnewtechnologiesintoclothingproductionprocesses.
Moreover,companiesshouldalsoconsidertheimpactoftechnologyontheworkforce.Whileautomationandadvancedmanufacturingprocessesmayleadtoincreasedefficiencyandproductivity,theymayalsodisplacehumanworkers.Companiesneedtobalancethepotentialbenefitsoftechnologywiththeneedtoensureasustainableandequitableworkforce.
Intermsofsustainability,technologycouldhelpreducetheenvironmentalimpactoftheclothingindustry.Forexample,theuseofdigitalprintingtechnologiescanreducewaterandenergyconsumptionintheproductionoftextiles.Similarly,smartmanufacturingprocessescanhelpreducewasteandenablemoreefficientuseofresources.
Personalizationisanotherareawheretechnologycantransformtheclothingindustry.Asfashionbecomesmorepersonalized,companiescanusedataandanalyticstobetterunderstandtheircustomers’preferencesandoffercustomizedproductsandservices.Advancesin3Dprintingandscanningtechnologiescanalsoenablecustomerstocreatetheirownuniqueclothingdesigns.
Finally,theadoptionofnewtechnologiesintheclothingindustrymustalsoaddressdataprivacyconcerns.Thecollection,storage,anduseofcustomerdatamustcomplywithprivacyregulationstoprotectconsumers’rightsandpreventbreachesofpersonalinformation.
Inconclusion,theclothingindustryisripefordisruptionthroughtheadoptionofnewtechnologies.Byleveraginginnovationssuchasautomation,advancedmanufacturing,digitalprinting,andpersonalizeddesign,companiescanoptimizetheiroperationsanddelivermoresustainable,efficient,andpersonalizedproductstocustomers.However,companiesmustalsonavigatethechallengesofcost,collaboration,workforcedisplacement,anddataprivacyconcerns.Astechnologycontinuestoevolve,itwillbecriticalforcompaniestostayabreastofdevelopmentsandleveragenewopportunitiestoremaincompetitiveandmeettheevolvingneedsoftheircustomersInadditiontotheopportunitiesandchallengesdiscussedearlier,thereareseveralothertrendsthatareshapingthefutureofmanufacturing.Oneofthesetrendsistheriseofadvancedanalyticsandartificialintelligence(AI)inmanufacturing.WiththehelpofAIandanalytics,manufacturerscangaininsightsintotheirproductionprocesses,identifyinefficiencies,andmakedata-drivendecisionstooptimizetheiroperations.Moreover,AI-poweredpredictivemaintenancecanhelpcompaniesreducedowntime,extendthelifespanoftheirequipment,andcutcosts.
Anothertrendthatisgainingmomentumistheadoptionofblockchaintechnologyinmanufacturing.Blockchaincanhelpmanufacturersenhancetheirsupplychainvisibility,improvetraceability,andeliminatefraud.Forexample,withblockchain,manufacturerscantracktheoriginofrawmaterials,monitortheproductionprocess,andensuretheauthenticityofthefinalproduct.Furthermore,blockchaincanenablesecureandtransparenttransactionsbetweenmanufacturersandtheirsuppliers,customers,andpartners.
Furthermore,theriseofthecirculareconomyisalsotransformingthemanufacturinglandscape.Thecirculareconomyisaneconomicmodelthatfocusesonreducingwaste,maximizingresourceefficiency,andreusingandrecyclingmaterials.Throughclosed-loopsystems,manufacturerscanminimizetheirenvironmentalimpact,reducetheirrelianceonvirginmaterials,andcreatenewbusinessopportunities.Forexample,manufacturerscanimplementproducttake-backprograms,userecycledmaterialsintheirproducts,andleveragethepowerof3Dprintingandotheradvancedtechnologiestocreatesustainableproducts.
Allthesetrendsandtechnologiesareforcingthemanufacturingindustrytoevolveandadapttothechangingmarketconditions.Astheindustryfacesnewchallenges,companiesthatcaninnovate,collaborate,andembracenewtechnologieswillbebetterequippedtosucceedinthemarketplace.Moreover,companiesmustalsofocusonnurturingtheirworkforceandreskillingtheiremployeestopreparethemforthefutureofwork.Byinvestingintheirpeople,companiescanbuildacultureofinnovation,diversity,andinclusivitythatcandrivetheirgrowthandsuccessforyearstocomeInadditiontoembracinginnovationandinvestinginemployeedevelopment,companiesmustalsofocusonsustainabilityandsocialresponsibility.Consumersareincreasinglydemandingthatbusinessesplayanactiveroleinaddressingenvironmentalandsocialissues,andcompaniesthatprioritizesustainabilityarelikelytoenjoyacompetitiveadvantageinthemarketplace.
Onewaybusinessescandemonstratetheircommitmenttosustainabilityisbyadoptingcirculareconomyprinciples.Insteadofthetraditionallinearmodelof“take,make,dispose,”thecirculareconomyseekstokeepresourcesinuseforaslongaspossible,minimizingwasteandmaximizingvalue.Companiescanachievethisbydesigningproductsfordurabilityandreuse,usingrenewableresources,andimplementingclosed-loopsupplychains.
Anotherkeyareaoffocusforcompaniesissocialresponsibility.Businessesthatprioritizediversity,inclusivity,andethicalpracticesaremorelikelytoattractandretaintoptalen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭健康檔案與疾病預(yù)防計(jì)劃表
- 股份制改革流程操作指南
- 養(yǎng)殖產(chǎn)業(yè)合作與獸醫(yī)服務(wù)協(xié)議
- 專業(yè)寫作培訓(xùn)資源共享協(xié)議
- 公司內(nèi)部人事調(diào)整規(guī)章制度
- 智能交通系統(tǒng)建設(shè)及交通管理優(yōu)化方案設(shè)計(jì)
- 工作流程表格-任務(wù)清單
- 電子會(huì)議系統(tǒng)使用記錄表格
- 數(shù)學(xué)故事征文探索數(shù)學(xué)之美與實(shí)際應(yīng)用價(jià)值
- 歷史古代文明發(fā)展脈絡(luò)閱讀題
- 2024-2030年中國碳酸氫銨行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報(bào)告
- 人工智能訓(xùn)練師考核模塊需求說明
- 測繪作業(yè)人員安全規(guī)范
- 古村落鄉(xiāng)村文化旅游古鎮(zhèn)旅游外文文獻(xiàn)翻譯2014年
- 2024年臺(tái)州椒江中考二模英語試題含答案
- 2024年湖南交通職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 第8章-軸測圖課件
- 多重耐藥菌病人的管理-(1)課件
- 加工中心操作規(guī)程培訓(xùn)
- 高速公路工程施工安全標(biāo)準(zhǔn)化指南
- 危險(xiǎn)貨物運(yùn)輸-課件
評論
0/150
提交評論