版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究摘要:本文針對四輥冷軋機軋制過程中工作輥溫度場變化和熱變形的預(yù)測控制問題展開了研究。針對工作輥溫度場變化的復(fù)雜性,本文采用了多物理場耦合模型,考慮了板材溫度場、滾制接觸變形、輥筒轉(zhuǎn)動、輥殼傳熱等因素,并采用有限元方法對模型進(jìn)行了求解,得到了工作輥溫度變化規(guī)律。同時,本文建立了基于BP神經(jīng)網(wǎng)絡(luò)的熱變形預(yù)測模型,通過對軋制實驗數(shù)據(jù)的建模,得到了預(yù)測模型,并對模型進(jìn)行了仿真驗證。最后,本文基于預(yù)測模型設(shè)計了預(yù)測控制算法,并進(jìn)行了仿真模擬。仿真結(jié)果表明,本文所提出的預(yù)測控制算法能夠有效地控制軋制過程中的溫度變化和熱變形,提高了軋制品質(zhì)和生產(chǎn)效率。
關(guān)鍵詞:四輥冷軋機;工作輥溫度場;熱變形預(yù)測控制;多物理場耦合模型;BP神經(jīng)網(wǎng)絡(luò);仿真模擬
Abstract:Thispaperfocusesonthestudyofthetemperaturefieldvariationoftheworkingrollsandthepredictionandcontrolofthermaldeformationintheprocessofcoldrollingonafour-rollmill.Consideringthecomplexityofthetemperaturefieldchangeoftheworkingrolls,amultiphysicscouplingmodelisadoptedinthispaper,whichtakesintoaccountthetemperaturefieldoftheplate,therollingcontactdeformation,therotationoftherollers,theheattransferoftherollershellandotherfactors.Thefiniteelementmethodisusedtosolvethemodel,andthetemperaturechangeoftheworkingrollsisobtained.Atthesametime,athermaldeformationpredictionmodelbasedonBPneuralnetworkisestablishedinthispaper.Bymodelingtherollingexperimentaldata,thepredictionmodelisobtainedandverifiedbysimulation.Finally,basedonthepredictionmodel,thepredictionandcontrolalgorithmisdesignedandsimulated.Thesimulationresultsshowthattheproposedpredictionandcontrolalgorithmcaneffectivelycontrolthetemperaturechangeandthermaldeformationintherollingprocess,andimprovethequalityandproductionefficiencyoftherollingproducts.
Keywords:four-rollmill;workingrolltemperaturefield;thermaldeformationpredictionandcontrol;multiphysicscouplingmodel;BPneuralnetwork;simulationandmodeling。Intherollingprocess,theworkingrolltemperaturefieldandthermaldeformationareimportantfactorsthataffectthequalityandproductionefficiencyoftherollingproducts.Toeffectivelycontrolthesefactors,amultiphysicscouplingmodelwasproposedtodescribetherollingprocess,whichtakesintoaccounttheheattransfer,deformation,andstressdistributioninthefour-rollmill.
Basedonthemultiphysicscouplingmodel,aBPneuralnetworkwastrainedtopredictthetemperaturechangeandthermaldeformationduringtherollingprocess.Thetrainingdataweregeneratedbysimulatingtherollingprocessunderdifferentrollingspeeds,rollingforces,andinitialtemperatures.
Usingthepredictedtemperatureanddeformationdata,acontrolalgorithmwasdevelopedtoadjusttherollingparametersinreal-time,suchastherollingspeed,rollingforce,andcoolantflowrate.Thecontrolalgorithmwasdesignedtominimizethetemperaturechangeandthermaldeformationintheworkingroll,whilemaintainingthedesiredproductqualityandproductionefficiency.
Tovalidatetheproposedpredictionandcontrolalgorithm,simulationswereconductedunderdifferentrollingconditions.Thesimulationresultsshowedthatthealgorithmeffectivelycontrolledthetemperaturechangeandthermaldeformationintheworkingroll,andimprovedthequalityandproductionefficiencyoftherollingproducts.
Overall,theproposedmultiphysicscouplingmodel,BPneuralnetwork,andcontrolalgorithmprovideapromisingapproachforimprovingtheprecisionandefficiencyoftherollingprocess.Furtherresearchisneededtovalidatethealgorithminreal-worldrollingapplicationsandtooptimizethealgorithmfordifferentrollingmaterialsandproductspecifications。Inadditiontotheproposedapproach,thereareothermethodsbeingdevelopedtoimprovetherollingprocess.Onesuchmethodistheuseofadvancedmaterialmodelstosimulatetherollingprocessandpredictthebehaviorofthematerial.Thesemodelsconsiderthemicrostructureofthematerial,theinteractionsbetweenthematerialandtherolls,andthethermalconditionsduringtheprocess.
Anotherareaofresearchisthedevelopmentofintelligentcontrolsystemsthatcanmonitorandadjusttherollingprocessinreal-time.Thesesystemsusesensorstocollectdataontherollingprocess,andadvancedalgorithmstoanalyzethedataandmakeadjustmentstotheprocessparameters.
Furthermore,theuseofadvancedsensorsandsystemsformeasuringtheshapeandprofileoftherolledproductisanimportantareaofresearch.Thesesensorscanprovidereal-timefeedbackonthequalityoftheproductandallowforadjustmentstobemadetotherollingprocesstoensurethattheproductmeetsthedesiredspecifications.
Inconclusion,therollingprocessisacomplexandmulti-physicsprocessthatrequirescarefulcontrolandoptimization.Theproposedapproach,whichcombinesamultiphysicscouplingmodel,BPneuralnetwork,andcontrolalgorithm,providesapromisingsolutionforimprovingtheprecisionandefficiencyoftherollingprocess.However,furtherresearchisneededtovalidateandoptimizethealgorithmfordifferentrollingmaterialsandproductspecifications.Moreover,othermethodssuchastheuseofadvancedmaterialmodels,intelligentcontrolsystems,andadvancedsensorsshouldalsobeexploredtoenhancetherollingprocess。Onepotentialareaforfutureresearchinimprovingtherollingprocessistheuseofadvancedmaterialmodels.Thebehaviorofmaterialsduringtherollingprocesscanbecomplexanddifficulttopredict,especiallyforadvancedmaterialssuchascompositesandalloys.Therefore,theuseofadvancedmaterialmodels,suchascrystalplasticityorcontinuumdamagemechanics,couldprovideamoreaccuraterepresentationofthebehaviorofthematerialduringtherollingprocess.Thiscouldleadtomoreprecisecontroloftheprocessandpotentiallyimprovedproductquality.
Intelligentcontrolsystemscouldalsobeexploredasameansofimprovingtheefficiencyandprecisionoftherollingprocess.Thesesystemscouldincorporatedatafromsensorsmonitoringtherollingprocess,aswellasothervariablessuchastemperatureandhumidity,tooptimizetheprocessinreal-time.Byusingmachinelearningalgorithmsandotheradvancedtechniques,thesesystemscouldadapttochangingconditionsandcontinuouslyimprovetherollingprocess.
Finally,theuseofadvancedsensorscouldalsoenhancetherollingprocess.Forexample,advancedimagingtechniquessuchasmicrocomputedtomographycouldbeusedtoprovidedetailedinformationaboutthemicrostructureofthematerialduringtherollingprocess.Thisinformationcouldbeusedtoadjusttheprocessinreal-timeandensureoptimalproductquality.
Inconclusion,therollingprocessplaysacriticalroleintheproductionofawiderangeofproducts,includingmetals,plastics,andcomposites.Avarietyofmethodscanbeusedtoimprovetheprecisionandefficiencyoftheprocess,includingtheuseofmultiphysicsmodels,BPneuralnetworks,andcontrolalgorithms.However,furtherresearchisneededtovalidateandoptimizethesemethods,aswellasexploreotherapproachessuchasadvancedmaterialmodels,intelligentcontrolsystems,andadvancedsensors.Bycontinuingtoadvanceourunderstandingoftherollingprocess,wecanimproveproductquality,reducewaste,andenhancethecompetitivenessofindustriesaroundtheworld。Inadditiontothemethodsmentionedabove,thereareseveralotheravenuesofresearchthatcanbeexploredtoimprovetherollingprocess.Onesuchareaisadvancedmaterialmodels,whichcanhelptobetterpredictthebehaviorofthematerialduringrolling.Thiscanleadtoimprovedprocessdesignandgreatercontroloverthefinalproductquality.
Intelligentcontrolsystemsareanotherareaofresearchthatcouldhaveasignificantimpactontherollingprocess.Byincorporatingmachinelearningalgorithmsandreal-timedataanalysis,thesesystemscanoptimizetherollingprocesson-the-fly,adaptingtochangingconditionsandimprovingefficiencyandproductquality.Additionally,theuseofadvancedsensors,suchastemperatureandstrainsensors,canprovidemoreaccuratedataandfeedbacktocontrolsystems,furtherenhancingtheireffectiveness.
Therearealsoseveralchallengesassociatedwiththerollingprocessthatneedtobeaddressed.Onesuchchallengeistheneedtoreducerollingforceinordertodecreasewearandtearontheequipment,aswellasreduceenergyconsumption.Thiscanbeachievedthroughtheuseoflubricants,suchasoilorwater,aswellasthroughthedevelopmentofnewmaterialsandcoatingsthatreducefriction.
Anotherchallengeistheneedtoimprovetheaccuracyandprecisionoftherollingprocess.Thisisparticularlyimportantinindustriessuchasaerospaceandautomotive,whereevensmalldeviationsinproductdimensionscanhavesignificantconsequences.Toaddressthischallenge,researcherscanexploretheuseofadvancedmetrologytechniques,suchaslaserscanningandmicroscopy,toimprovemeasurementaccuracyandresolution.
Finally,thereisaneedforgreatercollaborationandknowledgesharingbetweenresearchers,industryleaders,andgovernmentagencies.Byworkingtogether,wecanbetterunderstandthechallengesassociatedwiththerollingprocessanddevelopmoreeffectivesolutionsthatimproveproductquality,reducewaste,andenhancecompetitiveness.
Inconclusion,therollingprocessisacritical
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度版權(quán)質(zhì)押合同:版權(quán)持有方與貸款方的版權(quán)抵押協(xié)議6篇
- 2025年度醫(yī)療設(shè)備RoHS環(huán)保評估與管理協(xié)議
- 創(chuàng)新中國(上海大學(xué))學(xué)習(xí)通測試及答案
- TRIZ實踐與應(yīng)用(中國創(chuàng)新研究所)學(xué)習(xí)通測試及答案
- 二零二五年度住宅二手房貸款服務(wù)合同范本3篇
- 二零二五年度二手車買賣及車輛售后服務(wù)保障計劃合同
- 揭秘植物生長
- 果膠項目商業(yè)計劃書(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
- T∕CHTS 10040-2021 公路無機結(jié)合料穩(wěn)定粒料基層振動法施工技術(shù)指南
- 集團(tuán)后備人才培養(yǎng)方案
- 腦卒中偏癱患者早期康復(fù)護(hù)理現(xiàn)狀(一)
- 國家開放大學(xué)電大本科《機電控制工程基礎(chǔ)》2023-2024期末試題及答案(試卷代號:1116)
- 個體診所藥品清單
- 急救技術(shù)-洗胃術(shù) (2)
- 混凝土配合比檢測報告
- 滕王閣序全文帶注音翻譯a打印版
- 大樹移植方法
評論
0/150
提交評論