四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究_第1頁
四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究_第2頁
四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究_第3頁
四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究_第4頁
四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四輥冷軋機軋制過程工作輥溫度場及熱變形預(yù)測控制研究摘要:本文針對四輥冷軋機軋制過程中工作輥溫度場變化和熱變形的預(yù)測控制問題展開了研究。針對工作輥溫度場變化的復(fù)雜性,本文采用了多物理場耦合模型,考慮了板材溫度場、滾制接觸變形、輥筒轉(zhuǎn)動、輥殼傳熱等因素,并采用有限元方法對模型進(jìn)行了求解,得到了工作輥溫度變化規(guī)律。同時,本文建立了基于BP神經(jīng)網(wǎng)絡(luò)的熱變形預(yù)測模型,通過對軋制實驗數(shù)據(jù)的建模,得到了預(yù)測模型,并對模型進(jìn)行了仿真驗證。最后,本文基于預(yù)測模型設(shè)計了預(yù)測控制算法,并進(jìn)行了仿真模擬。仿真結(jié)果表明,本文所提出的預(yù)測控制算法能夠有效地控制軋制過程中的溫度變化和熱變形,提高了軋制品質(zhì)和生產(chǎn)效率。

關(guān)鍵詞:四輥冷軋機;工作輥溫度場;熱變形預(yù)測控制;多物理場耦合模型;BP神經(jīng)網(wǎng)絡(luò);仿真模擬

Abstract:Thispaperfocusesonthestudyofthetemperaturefieldvariationoftheworkingrollsandthepredictionandcontrolofthermaldeformationintheprocessofcoldrollingonafour-rollmill.Consideringthecomplexityofthetemperaturefieldchangeoftheworkingrolls,amultiphysicscouplingmodelisadoptedinthispaper,whichtakesintoaccountthetemperaturefieldoftheplate,therollingcontactdeformation,therotationoftherollers,theheattransferoftherollershellandotherfactors.Thefiniteelementmethodisusedtosolvethemodel,andthetemperaturechangeoftheworkingrollsisobtained.Atthesametime,athermaldeformationpredictionmodelbasedonBPneuralnetworkisestablishedinthispaper.Bymodelingtherollingexperimentaldata,thepredictionmodelisobtainedandverifiedbysimulation.Finally,basedonthepredictionmodel,thepredictionandcontrolalgorithmisdesignedandsimulated.Thesimulationresultsshowthattheproposedpredictionandcontrolalgorithmcaneffectivelycontrolthetemperaturechangeandthermaldeformationintherollingprocess,andimprovethequalityandproductionefficiencyoftherollingproducts.

Keywords:four-rollmill;workingrolltemperaturefield;thermaldeformationpredictionandcontrol;multiphysicscouplingmodel;BPneuralnetwork;simulationandmodeling。Intherollingprocess,theworkingrolltemperaturefieldandthermaldeformationareimportantfactorsthataffectthequalityandproductionefficiencyoftherollingproducts.Toeffectivelycontrolthesefactors,amultiphysicscouplingmodelwasproposedtodescribetherollingprocess,whichtakesintoaccounttheheattransfer,deformation,andstressdistributioninthefour-rollmill.

Basedonthemultiphysicscouplingmodel,aBPneuralnetworkwastrainedtopredictthetemperaturechangeandthermaldeformationduringtherollingprocess.Thetrainingdataweregeneratedbysimulatingtherollingprocessunderdifferentrollingspeeds,rollingforces,andinitialtemperatures.

Usingthepredictedtemperatureanddeformationdata,acontrolalgorithmwasdevelopedtoadjusttherollingparametersinreal-time,suchastherollingspeed,rollingforce,andcoolantflowrate.Thecontrolalgorithmwasdesignedtominimizethetemperaturechangeandthermaldeformationintheworkingroll,whilemaintainingthedesiredproductqualityandproductionefficiency.

Tovalidatetheproposedpredictionandcontrolalgorithm,simulationswereconductedunderdifferentrollingconditions.Thesimulationresultsshowedthatthealgorithmeffectivelycontrolledthetemperaturechangeandthermaldeformationintheworkingroll,andimprovedthequalityandproductionefficiencyoftherollingproducts.

Overall,theproposedmultiphysicscouplingmodel,BPneuralnetwork,andcontrolalgorithmprovideapromisingapproachforimprovingtheprecisionandefficiencyoftherollingprocess.Furtherresearchisneededtovalidatethealgorithminreal-worldrollingapplicationsandtooptimizethealgorithmfordifferentrollingmaterialsandproductspecifications。Inadditiontotheproposedapproach,thereareothermethodsbeingdevelopedtoimprovetherollingprocess.Onesuchmethodistheuseofadvancedmaterialmodelstosimulatetherollingprocessandpredictthebehaviorofthematerial.Thesemodelsconsiderthemicrostructureofthematerial,theinteractionsbetweenthematerialandtherolls,andthethermalconditionsduringtheprocess.

Anotherareaofresearchisthedevelopmentofintelligentcontrolsystemsthatcanmonitorandadjusttherollingprocessinreal-time.Thesesystemsusesensorstocollectdataontherollingprocess,andadvancedalgorithmstoanalyzethedataandmakeadjustmentstotheprocessparameters.

Furthermore,theuseofadvancedsensorsandsystemsformeasuringtheshapeandprofileoftherolledproductisanimportantareaofresearch.Thesesensorscanprovidereal-timefeedbackonthequalityoftheproductandallowforadjustmentstobemadetotherollingprocesstoensurethattheproductmeetsthedesiredspecifications.

Inconclusion,therollingprocessisacomplexandmulti-physicsprocessthatrequirescarefulcontrolandoptimization.Theproposedapproach,whichcombinesamultiphysicscouplingmodel,BPneuralnetwork,andcontrolalgorithm,providesapromisingsolutionforimprovingtheprecisionandefficiencyoftherollingprocess.However,furtherresearchisneededtovalidateandoptimizethealgorithmfordifferentrollingmaterialsandproductspecifications.Moreover,othermethodssuchastheuseofadvancedmaterialmodels,intelligentcontrolsystems,andadvancedsensorsshouldalsobeexploredtoenhancetherollingprocess。Onepotentialareaforfutureresearchinimprovingtherollingprocessistheuseofadvancedmaterialmodels.Thebehaviorofmaterialsduringtherollingprocesscanbecomplexanddifficulttopredict,especiallyforadvancedmaterialssuchascompositesandalloys.Therefore,theuseofadvancedmaterialmodels,suchascrystalplasticityorcontinuumdamagemechanics,couldprovideamoreaccuraterepresentationofthebehaviorofthematerialduringtherollingprocess.Thiscouldleadtomoreprecisecontroloftheprocessandpotentiallyimprovedproductquality.

Intelligentcontrolsystemscouldalsobeexploredasameansofimprovingtheefficiencyandprecisionoftherollingprocess.Thesesystemscouldincorporatedatafromsensorsmonitoringtherollingprocess,aswellasothervariablessuchastemperatureandhumidity,tooptimizetheprocessinreal-time.Byusingmachinelearningalgorithmsandotheradvancedtechniques,thesesystemscouldadapttochangingconditionsandcontinuouslyimprovetherollingprocess.

Finally,theuseofadvancedsensorscouldalsoenhancetherollingprocess.Forexample,advancedimagingtechniquessuchasmicrocomputedtomographycouldbeusedtoprovidedetailedinformationaboutthemicrostructureofthematerialduringtherollingprocess.Thisinformationcouldbeusedtoadjusttheprocessinreal-timeandensureoptimalproductquality.

Inconclusion,therollingprocessplaysacriticalroleintheproductionofawiderangeofproducts,includingmetals,plastics,andcomposites.Avarietyofmethodscanbeusedtoimprovetheprecisionandefficiencyoftheprocess,includingtheuseofmultiphysicsmodels,BPneuralnetworks,andcontrolalgorithms.However,furtherresearchisneededtovalidateandoptimizethesemethods,aswellasexploreotherapproachessuchasadvancedmaterialmodels,intelligentcontrolsystems,andadvancedsensors.Bycontinuingtoadvanceourunderstandingoftherollingprocess,wecanimproveproductquality,reducewaste,andenhancethecompetitivenessofindustriesaroundtheworld。Inadditiontothemethodsmentionedabove,thereareseveralotheravenuesofresearchthatcanbeexploredtoimprovetherollingprocess.Onesuchareaisadvancedmaterialmodels,whichcanhelptobetterpredictthebehaviorofthematerialduringrolling.Thiscanleadtoimprovedprocessdesignandgreatercontroloverthefinalproductquality.

Intelligentcontrolsystemsareanotherareaofresearchthatcouldhaveasignificantimpactontherollingprocess.Byincorporatingmachinelearningalgorithmsandreal-timedataanalysis,thesesystemscanoptimizetherollingprocesson-the-fly,adaptingtochangingconditionsandimprovingefficiencyandproductquality.Additionally,theuseofadvancedsensors,suchastemperatureandstrainsensors,canprovidemoreaccuratedataandfeedbacktocontrolsystems,furtherenhancingtheireffectiveness.

Therearealsoseveralchallengesassociatedwiththerollingprocessthatneedtobeaddressed.Onesuchchallengeistheneedtoreducerollingforceinordertodecreasewearandtearontheequipment,aswellasreduceenergyconsumption.Thiscanbeachievedthroughtheuseoflubricants,suchasoilorwater,aswellasthroughthedevelopmentofnewmaterialsandcoatingsthatreducefriction.

Anotherchallengeistheneedtoimprovetheaccuracyandprecisionoftherollingprocess.Thisisparticularlyimportantinindustriessuchasaerospaceandautomotive,whereevensmalldeviationsinproductdimensionscanhavesignificantconsequences.Toaddressthischallenge,researcherscanexploretheuseofadvancedmetrologytechniques,suchaslaserscanningandmicroscopy,toimprovemeasurementaccuracyandresolution.

Finally,thereisaneedforgreatercollaborationandknowledgesharingbetweenresearchers,industryleaders,andgovernmentagencies.Byworkingtogether,wecanbetterunderstandthechallengesassociatedwiththerollingprocessanddevelopmoreeffectivesolutionsthatimproveproductquality,reducewaste,andenhancecompetitiveness.

Inconclusion,therollingprocessisacritical

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論