2022-2023學年鐵嶺市重點中學高一數(shù)學第二學期期末聯(lián)考試題含解析_第1頁
2022-2023學年鐵嶺市重點中學高一數(shù)學第二學期期末聯(lián)考試題含解析_第2頁
2022-2023學年鐵嶺市重點中學高一數(shù)學第二學期期末聯(lián)考試題含解析_第3頁
2022-2023學年鐵嶺市重點中學高一數(shù)學第二學期期末聯(lián)考試題含解析_第4頁
2022-2023學年鐵嶺市重點中學高一數(shù)學第二學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過點且與原點距離最大的直線方程是()A. B.C. D.2.在正方體中,異面直線與所成的角為()A.30° B.45° C.60° D.90°3.已知,是兩條不同的直線,,是兩個不同的平面,給出下列四個結(jié)論:①,,,則;②若,,,則;③若,,,則;④若,,,則.其中正確結(jié)論的序號是A.①③ B.②③ C.①④ D.②④4.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則5.在中,已知,則等于()A. B.C.或 D.或6.對于復數(shù),定義映射.若復數(shù)在映射作用下對應復數(shù),則復數(shù)在復平面內(nèi)對應的點位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限7.若,則的坐標是()A. B. C. D.8.傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10記為數(shù)列,將可被5整除的三角形數(shù),按從小到大的順序組成一個新數(shù)列,可以推測:()A.1225 B.1275 C.2017 D.20189.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.10.某幾何體的三視圖如下圖所示(單位:cm)則該幾何體的表面積(單位:)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是公差不為0的等差數(shù)列,,且成等比數(shù)列,則的前9項和_______.12.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.13.已知函數(shù)y=sin(x+)(>0,-<)的圖象如圖所示,則=________________.14.在等比數(shù)列中,,,則__________.15.已知兩點,則線段的垂直平分線的方程為_________.16.在銳角△中,角所對應的邊分別為,若,則角等于________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.求證:(1)AC⊥BC1;(2)AC1∥平面CDB1.18.如圖,已知四棱錐,底面是邊長為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點,為線段的中點(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積19.某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重(kg)數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組[60,65)的人數(shù)為1.根據(jù)一般標準,高二男生體重超過65kg屬于偏胖,低于55kg屬于偏瘦.觀察圖形的信息,回答下列問題:(1)求體重在[60,65)內(nèi)的頻率,并補全頻率分布直方圖;(2)用分層抽樣的方法從偏胖的學生中抽取6人對日常生活習慣及體育鍛煉進行調(diào)查,則各組應分別抽取多少人?(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).20.已知為數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和.21.設數(shù)列的前項和為,若且求若數(shù)列滿足,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

當直線與垂直時距離最大,進而可得直線的斜率,從而得到直線方程?!驹斀狻吭c坐標為,根據(jù)題意可知當直線與垂直時距離最大,由兩點斜率公式可得:所以所求直線的斜率為:故所求直線的方程為:,化簡可得:故答案選A【點睛】本題考查點到直線的距離公式,涉及直線的點斜式方程和一般方程,屬于基礎(chǔ)題。2、C【解析】

首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接.因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點睛】本題考查異面直線所成的角,利用平行構(gòu)造三角形或平行四邊形是關(guān)鍵,考查了空間想象能力和推理能力,屬于中檔題.3、C【解析】

利用面面垂直的判定定理判斷①;根據(jù)面面平行的判定定理判斷②;利用線面垂直和線面平行的性質(zhì)判斷③;利用線面垂直和面面平行的性質(zhì)判斷④【詳解】①,,或,又,則成立,故正確②若,,或和相交,并不一定平行于,故錯誤③若,,則或,若,則并不一定平行于,故錯誤④若,,,又,成立,故正確綜上所述,正確的命題的序號是①④故選【點睛】本題主要考查了命題的真假判斷和應用,解題的關(guān)鍵是理解線面,面面平行與垂直的判斷定理和性質(zhì)定理,屬于基礎(chǔ)題.4、B【解析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點:空間點線面位置關(guān)系.5、C【解析】在中,已知,由余弦定理,即,解得或,又,或,故選C.6、A【解析】,對應點,在第四象限.7、C【解析】

,.故選C.8、A【解析】

通過尋找規(guī)律以及數(shù)列求和,可得,然后計算,可得結(jié)果.【詳解】根據(jù)題意可知:則由…可得所以故選:A【點睛】本題考查不完全歸納法的應用,本題難點在于找到,屬難題,9、B【解析】

先根據(jù)斜二測畫法的性質(zhì)求出原圖形,再分析繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積即可.【詳解】根據(jù)斜二測畫法的性質(zhì)可知,原是以為底,高為的等腰三角形.又.故為邊長為2的正三角形.則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體可看做兩個以底面半徑為,高為的圓錐組合而成.故表面積為.故選:B【點睛】本題主要考查了斜二測畫法還原幾何圖形與旋轉(zhuǎn)體的側(cè)面積求解.需要根據(jù)題意判斷出旋轉(zhuǎn)后的幾何體形狀再用公式求解.屬于中檔題.10、C【解析】

通過三視圖的觀察可得到該幾何體是由一個圓錐加一個圓柱得到的,表面積由一個圓錐的表面積和一個圓柱的側(cè)面積組成【詳解】圓柱的側(cè)面積為,圓錐的表面積為,其中,,。選C【點睛】幾何體的表面積一定要看清楚哪些面存在,哪些面不存在二、填空題:本大題共6小題,每小題5分,共30分。11、117【解析】

由成等比數(shù)列求出公差,由前項公式求和.【詳解】設數(shù)列是公差為,則,由成等比數(shù)列得,解得,∴.故答案為:117.【點睛】本題考查等差數(shù)列的前項和公式,考查等比數(shù)列的性質(zhì).解題關(guān)鍵是求出數(shù)列的公差.12、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點:圓錐的體積與面積公式,圓錐的性質(zhì).13、【解析】

由圖可知,14、8【解析】

可先計算出公比,從而利用求得結(jié)果.【詳解】因為,所以,所以,則.【點睛】本題主要考查等比數(shù)列基本量的相關(guān)計算,難度很小.15、【解析】

求出直線的斜率和線段的中點,利用兩直線垂直時斜率之積為可得出線段的垂直平分線的斜率,然后利用點斜式可寫出中垂線的方程.【詳解】線段的中點坐標為,直線的斜率為,所以,線段的垂直平分線的斜率為,其方程為,即.故答案為.【點睛】本題考查線段垂直平分線方程的求解,有如下兩種方法求解:(1)求出中垂線的斜率和線段的中點,利用點斜式得出中垂線所在直線方程;(2)設動點坐標為,利用動點到線段兩端點的距離相等列式求出動點的軌跡方程,即可作為中垂線所在直線的方程.16、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應用.【方法點晴】本題主要考查了正弦定理的應用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)由勾股定理可證得為直角三角形即可證得,由直棱柱可知面,可證得,根據(jù)線面垂直的判定定理可證得面,從而可得.(2)設與的交點為,連結(jié),由中位線可證得,根據(jù)線面平行的判定定理可證得平面.試題解析:證明:(1)證明:,,為直角三角形且,即.又∵三棱柱為直棱柱,面,面,,,面,面,.(2)設與的交點為,連結(jié),是的中點,是的中點,.面,面,平面.考點:1線線垂直,線面垂直;2線面平行.18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)【解析】

(Ⅰ)連接,交于點;根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.【詳解】(Ⅰ)證明:連接,交于點四邊形為菱形為中點又為中點平面,平面平面(Ⅱ)為正三角形,為中點平面平面,平面平面,平面平面,又平面(Ⅲ)為中點又,,由(Ⅱ)知,【點睛】本題考查立體幾何中線面平行、線線垂直關(guān)系的證明、三棱錐體積的求解問題;涉及到線面平行判定定理、面面垂直性質(zhì)定理和判定定理的應用、體積橋的方式求解三棱錐體積等知識,屬于??碱}型.19、(1)(2)三段人數(shù)分別為3,2,1(3)【解析】試題分析:(1)利用頻率分布直方圖的性質(zhì)能求出求出體重在[60,65)內(nèi)的頻率,由此能補全的頻率分布直方圖;(2)設男生總?cè)藬?shù)為n,由,可得n=1000,從而體重超過65kg的總?cè)藬?shù)300,由此能求出各組應分別抽取的人數(shù);(3)利用頻率分布直方圖能估計高二男生的體重的中位數(shù)與平均數(shù)試題解析:(1)體重在內(nèi)的頻率補全的頻率分布直方圖如圖所示.(2)設男生總?cè)藬?shù)為,由,可得體重超過的總?cè)藬?shù)為在的人數(shù)為,應抽取的人數(shù)為,在的人數(shù)為,應抽取的人數(shù)為,在的人數(shù)為,應抽取的人數(shù)為.所以在,,三段人數(shù)分別為3,2,1.(3)中位數(shù)為60kg,平均數(shù)為(kg)考點:1.眾數(shù)、中位數(shù)、平均數(shù);2.分層抽樣方法;3.頻率分布直方圖20、(1)(2)【解析】

(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【詳解】(1)因為,所以當時,,相減得,,當時,,因此數(shù)列為首項為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論