![基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第1頁(yè)](http://file4.renrendoc.com/view/ca0456a4fe0dc9595d9d332c06fb3c3c/ca0456a4fe0dc9595d9d332c06fb3c3c1.gif)
![基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第2頁(yè)](http://file4.renrendoc.com/view/ca0456a4fe0dc9595d9d332c06fb3c3c/ca0456a4fe0dc9595d9d332c06fb3c3c2.gif)
![基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第3頁(yè)](http://file4.renrendoc.com/view/ca0456a4fe0dc9595d9d332c06fb3c3c/ca0456a4fe0dc9595d9d332c06fb3c3c3.gif)
![基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第4頁(yè)](http://file4.renrendoc.com/view/ca0456a4fe0dc9595d9d332c06fb3c3c/ca0456a4fe0dc9595d9d332c06fb3c3c4.gif)
![基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第5頁(yè)](http://file4.renrendoc.com/view/ca0456a4fe0dc9595d9d332c06fb3c3c/ca0456a4fe0dc9595d9d332c06fb3c3c5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)摘要:
全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)(DPNN)作為一種新型人工神經(jīng)網(wǎng)絡(luò),在處理時(shí)空脈沖信息方面具有很大的優(yōu)勢(shì)。但是,有限精度的DPNN仍然受到系統(tǒng)噪聲、器件不匹配和非理想實(shí)現(xiàn)的影響,這些因素會(huì)導(dǎo)致DPNN在實(shí)際應(yīng)用中性能下降,因此需要探索更有效的設(shè)計(jì)方法。本文提出了一種基于SpikeTimingDependentPlasticity(STDP)法則的DPNN設(shè)計(jì)方法。首先,我們將STDP應(yīng)用于統(tǒng)一的網(wǎng)絡(luò)設(shè)計(jì),包括永磁只讀存儲(chǔ)器(PMRM)、脈沖生成與重復(fù)模塊(PGRM)和喜馬拉雅級(jí)數(shù)模塊(HSRM)。其次,我們提出了一個(gè)新穎的思想:使用時(shí)序精度模擬浮點(diǎn)運(yùn)算。通過(guò)使用這種方法,我們能夠抵消系統(tǒng)噪聲和器件不匹配對(duì)精度的影響。最后,我們?cè)谑謱?xiě)數(shù)字識(shí)別任務(wù)上實(shí)現(xiàn)了DPNN的硬件實(shí)現(xiàn),并與現(xiàn)有的實(shí)現(xiàn)進(jìn)行了比較。實(shí)驗(yàn)結(jié)果表明,我們的設(shè)計(jì)方法能夠顯著提高DPNN的性能和精度。
關(guān)鍵詞:
全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò),SpikeTimingDependentPlasticity,低精度數(shù)據(jù)表示
Abstract:
Asanoveltypeofartificialneuralnetwork,digitalpulseneuralnetwork(DPNN)hasgreatadvantagesindealingwithspatiotemporalpulseinformation.However,thelimitedprecisionDPNNisstillaffectedbysystemnoise,devicemismatchandnon-idealimplementation,whichwillleadtoperformancedegradationinpracticalapplications.Therefore,itisnecessarytoexploremoreeffectivedesignmethods.Inthispaper,aDPNNdesignmethodbasedontheSpikeTimingDependentPlasticity(STDP)ruleisproposed.First,weapplySTDPtotheunifiednetworkdesign,includingPermanentMagnetRead-OnlyMemory(PMRM),PulseGenerationandRepetitionModule(PGRM)andtheHimalayanSeriesModule(HSRM).Second,weproposeanovelidea:simulatingfloating-pointoperationswithtemporalaccuracy.Byusingthisapproach,wecanoffsettheimpactofsystemnoiseanddevicemismatchonaccuracy.Finally,weimplementedtheDPNNinhardwareforhandwrittendigitrecognitiontaskandcompareditwithexistingimplementations.TheexperimentalresultsshowthatourdesignmethodcansignificantlyimprovetheperformanceandaccuracyofDPNN.
Keywords:
Digitalpulseneuralnetwork,SpikeTimingDependentPlasticity,low-precisiondatarepresentationDigitalpulseneuralnetwork(DPNN)isatypeofartificialneuralnetwork(ANN)thatmimicsthebiologicalneurons'behavior.InDPNN,theinformationistransmittedusingdigitalpulses,whichisalsocalledspikes.ThespikingactivityismodeledbasedontheSpikeTimingDependentPlasticity(STDP),whichisabiologicallearningrule.TheSTDPupdateruleisbasedontheprecisetimingofpre-andpost-synapticspikes.Therefore,DPNNscanperformefficientcomputationsbyexploitingthetemporalinformationoftheinputs.
However,DPNNsalsofacesomechallenges,suchassystemnoiseanddevicemismatch,whichcandegradetheirperformanceandaccuracy.Inaddition,theconventionalapproachtorepresentdatainDPNNsuseshigh-precisionformats,whichincreasesthememoryrequirementandcomputationalcomplexityofthesystem.Therefore,thereisaneedtodeveloplow-precisiondatarepresentationtechniquesthatcanreducethememoryrequirementandpowerconsumptionandimprovetheperformanceofDPNNs.
Toaddressthesechallenges,researchershaveproposedadesignmethodforDPNNsthatoptimizesthenetworkparametersbasedonthespikingfrequencyoftheneurons.Themethodalsoincorporatesalow-precisiondatarepresentationscheme,whichencodestheinputdatausingfewerbits.TheproposedmethodcanimprovetheperformanceandaccuracyofDPNNswhilereducingthehardwarecost.
Intheproposedmethod,insteadofusinghigh-precisionweights,thenetworkweightsarerepresentedusinglow-precisionformats,suchasbinaryorternaryweights.Theinputdataisalsoquantizedbeforefeedingitintothenetwork.Theselow-precisionrepresentationscanreducethememoryaccessandcomputationrequiredfortheinferenceprocess.
Moreover,theproposedmethodincorporatesnoiseanddevicemismatchmodelsintothenetworkdesign.Themodelssimulatethesystemnoiseanddevicemismatch,whichcandegradethenetwork'sperformance.Byincorporatingthesemodels,thenetworkcanlearntooperatewithtemporalaccuracyandovercometheimpactofsystemnoiseanddevicemismatchonaccuracy.
Tovalidatetheproposedmethod,theresearchersimplementedtheDPNNinhardwareforthehandwrittendigitrecognitiontask.TheexperimentalresultsshowedthattheproposeddesignmethodsignificantlyimprovedtheperformanceandaccuracyofDPNNcomparedtoexistingimplementations.Theresultsalsoshowedthatthelow-precisiondatarepresentationschemeandthenoiseanddevicemismatchmodelscanreducethehardwarecostwhilemaintainingtheaccuracy.
Inconclusion,theproposeddesignmethodforDPNNscanimprovetheirperformanceandaccuracywhilereducingthehardwarecost.Themethodincorporateslow-precisiondatarepresentation,noise,anddevicemismatchmodelsintothenetworkdesigntooptimizethenetworkparametersbasedonthespikingfrequencyoftheneurons.TheexperimentalresultsshowedtheeffectivenessoftheproposedmethodforthehandwrittendigitrecognitiontaskFurthermore,theproposedmethodcanalsobeappliedtootherapplicationsthatrequirehighaccuracyandlowhardwarecost,suchasimageandspeechrecognition.Byutilizingtheproposedmethod,itispossibletodesignmoreefficientandaccurateDPNNsthatcanbeimplementedonlow-powerdevices,suchasmobilephones,smartwatches,andwearabledevices.
Inaddition,theproposedmethodcanalsobeextendedtoothertypesofneuralnetworks,suchasconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs),tofurtherimprovetheirperformanceandreducehardwarecost.Moreover,byintegratingtheproposedmethodwithotheroptimizationtechniques,suchaspruningandquantization,itispossibletodesignevenmoreefficientandaccurateneuralnetworks.
Finally,itisimportanttonotethatalthoughtheproposedmethodcansignificantlyreducethehardwarecostofDPNNs,itisnotapanaceaforallhardware-relatedissues.Thereareotherfactorsthatcanaffectthehardwarecost,suchasmemoryandprocessingspeed,whichshouldalsobetakenintoconsiderationwhendesigningneuralnetworksforlow-powerdevices.
Inconclusion,theproposedmethodfordesigningDPNNshasshownpromisingresultsinimprovingtheirperformanceandreducinghardwarecost.Itprovidesanewapproachfordesigningefficientandaccurateneuralnetworksthatcanbeimplementedonlow-powerdevices.Withfurtherresearchanddevelopment,theproposedmethodcanbeextendedtoothertypesofneuralnetworksandcanbecomeakeytoolforoptimizingneuralnetworkdesignOneareawheretheproposedmethodfordesigningDPNNscanbeparticularlyusefulisinedgecomputingapplications.Edgecomputinginvolvesperformingcomputationanddataprocessingclosertothesourceofthatdata,ratherthansendingalldatatoacentrallocationforprocessing.Thisisparticularlyimportantforapplicationsthatrelyonreal-timedataprocessing,suchasautonomousvehicles,drones,andsmarthomes.
However,edgedevicestypicallyhavelimitedcomputationalresourcesandbatterylife,whichmakesitdifficulttoefficientlyexecutecomplexmachinelearningmodelssuchasdeepneuralnetworks.TheproposedmethodcanhelpaddressthischallengebyenablingthedesignofDPNNsthatareoptimizedforlowpowerconsumption,whilestillprovidinghighaccuracy.Thiscanenablearangeofnewapplicationsthatrelyonedgecomputing,whilealsoreducingtheenvironmentalimpactofcompute-intensivetasks.
OnepotentialapplicationofDPNNsinlow-powerdevicesisinmachinevision.Forexample,wearabledevicessuchassmartglassescoulduseDPNNstoperformreal-timeobjectdetectionandrecognition,withoutrelyingonaconnectiontoamorepowerfuldeviceorinternetconnection.Thiscanenablenewapplicationssuchasenhancedaugmentedrealityexperiences,andobjectrecognitionforthevisuallyimpaired.
AnotherpotentialapplicationofDPNNsisinnaturallanguageprocessing(NLP)tasks,suchasspeechrecognitionandmachinetranslation.Thesetasksarecrucialformanyapplications,includingvirtualassistantsandlanguagetranslationapps.However,theycanbecomputationallyintensive,andmayrequireextensivepreprocessingandfeatureextraction.DPNNscanenablemoreefficientandaccurateNLPtasksonlow-powerdevices,enablingtheseapplicati
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)二年級(jí)數(shù)學(xué)乘法口算測(cè)試題人教版
- 醫(yī)院網(wǎng)絡(luò)安全保密協(xié)議書(shū)范本
- 財(cái)產(chǎn)抵押借款合同范本
- 2025年度食堂窗口員工培訓(xùn)及管理服務(wù)合同
- 二零二五年度國(guó)際貨運(yùn)代理合同書(shū)協(xié)議書(shū)
- 二零二五年度集體魚(yú)塘承包與漁業(yè)法律法規(guī)咨詢合同范本
- 二零二五年度實(shí)習(xí)生薪資及培訓(xùn)費(fèi)用補(bǔ)充協(xié)議
- 人教版道德與法治九年級(jí)下冊(cè)5.1《走向世界大舞臺(tái)》聽(tīng)課評(píng)課記錄1
- 二零二五年度茶葉加盟店?duì)I銷推廣合作協(xié)議
- 二零二五年度物業(yè)與業(yè)主之間安全隱患賠償合同
- 現(xiàn)代通信原理與技術(shù)(第五版)PPT全套完整教學(xué)課件
- 社區(qū)獲得性肺炎教學(xué)查房
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統(tǒng)直流電弧保護(hù)技術(shù)要求
- DB31T 685-2019 養(yǎng)老機(jī)構(gòu)設(shè)施與服務(wù)要求
- 燕子山風(fēng)電場(chǎng)項(xiàng)目安全預(yù)評(píng)價(jià)報(bào)告
- 高一英語(yǔ)課本必修1各單元重點(diǎn)短語(yǔ)
- 糖尿病運(yùn)動(dòng)指導(dǎo)課件
- 完整版金屬學(xué)與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 心腦血管病的危害教學(xué)課件
評(píng)論
0/150
提交評(píng)論