基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第1頁(yè)
基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第2頁(yè)
基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第3頁(yè)
基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第4頁(yè)
基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于STDP法則的全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)摘要:

全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò)(DPNN)作為一種新型人工神經(jīng)網(wǎng)絡(luò),在處理時(shí)空脈沖信息方面具有很大的優(yōu)勢(shì)。但是,有限精度的DPNN仍然受到系統(tǒng)噪聲、器件不匹配和非理想實(shí)現(xiàn)的影響,這些因素會(huì)導(dǎo)致DPNN在實(shí)際應(yīng)用中性能下降,因此需要探索更有效的設(shè)計(jì)方法。本文提出了一種基于SpikeTimingDependentPlasticity(STDP)法則的DPNN設(shè)計(jì)方法。首先,我們將STDP應(yīng)用于統(tǒng)一的網(wǎng)絡(luò)設(shè)計(jì),包括永磁只讀存儲(chǔ)器(PMRM)、脈沖生成與重復(fù)模塊(PGRM)和喜馬拉雅級(jí)數(shù)模塊(HSRM)。其次,我們提出了一個(gè)新穎的思想:使用時(shí)序精度模擬浮點(diǎn)運(yùn)算。通過(guò)使用這種方法,我們能夠抵消系統(tǒng)噪聲和器件不匹配對(duì)精度的影響。最后,我們?cè)谑謱?xiě)數(shù)字識(shí)別任務(wù)上實(shí)現(xiàn)了DPNN的硬件實(shí)現(xiàn),并與現(xiàn)有的實(shí)現(xiàn)進(jìn)行了比較。實(shí)驗(yàn)結(jié)果表明,我們的設(shè)計(jì)方法能夠顯著提高DPNN的性能和精度。

關(guān)鍵詞:

全數(shù)字脈沖神經(jīng)網(wǎng)絡(luò),SpikeTimingDependentPlasticity,低精度數(shù)據(jù)表示

Abstract:

Asanoveltypeofartificialneuralnetwork,digitalpulseneuralnetwork(DPNN)hasgreatadvantagesindealingwithspatiotemporalpulseinformation.However,thelimitedprecisionDPNNisstillaffectedbysystemnoise,devicemismatchandnon-idealimplementation,whichwillleadtoperformancedegradationinpracticalapplications.Therefore,itisnecessarytoexploremoreeffectivedesignmethods.Inthispaper,aDPNNdesignmethodbasedontheSpikeTimingDependentPlasticity(STDP)ruleisproposed.First,weapplySTDPtotheunifiednetworkdesign,includingPermanentMagnetRead-OnlyMemory(PMRM),PulseGenerationandRepetitionModule(PGRM)andtheHimalayanSeriesModule(HSRM).Second,weproposeanovelidea:simulatingfloating-pointoperationswithtemporalaccuracy.Byusingthisapproach,wecanoffsettheimpactofsystemnoiseanddevicemismatchonaccuracy.Finally,weimplementedtheDPNNinhardwareforhandwrittendigitrecognitiontaskandcompareditwithexistingimplementations.TheexperimentalresultsshowthatourdesignmethodcansignificantlyimprovetheperformanceandaccuracyofDPNN.

Keywords:

Digitalpulseneuralnetwork,SpikeTimingDependentPlasticity,low-precisiondatarepresentationDigitalpulseneuralnetwork(DPNN)isatypeofartificialneuralnetwork(ANN)thatmimicsthebiologicalneurons'behavior.InDPNN,theinformationistransmittedusingdigitalpulses,whichisalsocalledspikes.ThespikingactivityismodeledbasedontheSpikeTimingDependentPlasticity(STDP),whichisabiologicallearningrule.TheSTDPupdateruleisbasedontheprecisetimingofpre-andpost-synapticspikes.Therefore,DPNNscanperformefficientcomputationsbyexploitingthetemporalinformationoftheinputs.

However,DPNNsalsofacesomechallenges,suchassystemnoiseanddevicemismatch,whichcandegradetheirperformanceandaccuracy.Inaddition,theconventionalapproachtorepresentdatainDPNNsuseshigh-precisionformats,whichincreasesthememoryrequirementandcomputationalcomplexityofthesystem.Therefore,thereisaneedtodeveloplow-precisiondatarepresentationtechniquesthatcanreducethememoryrequirementandpowerconsumptionandimprovetheperformanceofDPNNs.

Toaddressthesechallenges,researchershaveproposedadesignmethodforDPNNsthatoptimizesthenetworkparametersbasedonthespikingfrequencyoftheneurons.Themethodalsoincorporatesalow-precisiondatarepresentationscheme,whichencodestheinputdatausingfewerbits.TheproposedmethodcanimprovetheperformanceandaccuracyofDPNNswhilereducingthehardwarecost.

Intheproposedmethod,insteadofusinghigh-precisionweights,thenetworkweightsarerepresentedusinglow-precisionformats,suchasbinaryorternaryweights.Theinputdataisalsoquantizedbeforefeedingitintothenetwork.Theselow-precisionrepresentationscanreducethememoryaccessandcomputationrequiredfortheinferenceprocess.

Moreover,theproposedmethodincorporatesnoiseanddevicemismatchmodelsintothenetworkdesign.Themodelssimulatethesystemnoiseanddevicemismatch,whichcandegradethenetwork'sperformance.Byincorporatingthesemodels,thenetworkcanlearntooperatewithtemporalaccuracyandovercometheimpactofsystemnoiseanddevicemismatchonaccuracy.

Tovalidatetheproposedmethod,theresearchersimplementedtheDPNNinhardwareforthehandwrittendigitrecognitiontask.TheexperimentalresultsshowedthattheproposeddesignmethodsignificantlyimprovedtheperformanceandaccuracyofDPNNcomparedtoexistingimplementations.Theresultsalsoshowedthatthelow-precisiondatarepresentationschemeandthenoiseanddevicemismatchmodelscanreducethehardwarecostwhilemaintainingtheaccuracy.

Inconclusion,theproposeddesignmethodforDPNNscanimprovetheirperformanceandaccuracywhilereducingthehardwarecost.Themethodincorporateslow-precisiondatarepresentation,noise,anddevicemismatchmodelsintothenetworkdesigntooptimizethenetworkparametersbasedonthespikingfrequencyoftheneurons.TheexperimentalresultsshowedtheeffectivenessoftheproposedmethodforthehandwrittendigitrecognitiontaskFurthermore,theproposedmethodcanalsobeappliedtootherapplicationsthatrequirehighaccuracyandlowhardwarecost,suchasimageandspeechrecognition.Byutilizingtheproposedmethod,itispossibletodesignmoreefficientandaccurateDPNNsthatcanbeimplementedonlow-powerdevices,suchasmobilephones,smartwatches,andwearabledevices.

Inaddition,theproposedmethodcanalsobeextendedtoothertypesofneuralnetworks,suchasconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs),tofurtherimprovetheirperformanceandreducehardwarecost.Moreover,byintegratingtheproposedmethodwithotheroptimizationtechniques,suchaspruningandquantization,itispossibletodesignevenmoreefficientandaccurateneuralnetworks.

Finally,itisimportanttonotethatalthoughtheproposedmethodcansignificantlyreducethehardwarecostofDPNNs,itisnotapanaceaforallhardware-relatedissues.Thereareotherfactorsthatcanaffectthehardwarecost,suchasmemoryandprocessingspeed,whichshouldalsobetakenintoconsiderationwhendesigningneuralnetworksforlow-powerdevices.

Inconclusion,theproposedmethodfordesigningDPNNshasshownpromisingresultsinimprovingtheirperformanceandreducinghardwarecost.Itprovidesanewapproachfordesigningefficientandaccurateneuralnetworksthatcanbeimplementedonlow-powerdevices.Withfurtherresearchanddevelopment,theproposedmethodcanbeextendedtoothertypesofneuralnetworksandcanbecomeakeytoolforoptimizingneuralnetworkdesignOneareawheretheproposedmethodfordesigningDPNNscanbeparticularlyusefulisinedgecomputingapplications.Edgecomputinginvolvesperformingcomputationanddataprocessingclosertothesourceofthatdata,ratherthansendingalldatatoacentrallocationforprocessing.Thisisparticularlyimportantforapplicationsthatrelyonreal-timedataprocessing,suchasautonomousvehicles,drones,andsmarthomes.

However,edgedevicestypicallyhavelimitedcomputationalresourcesandbatterylife,whichmakesitdifficulttoefficientlyexecutecomplexmachinelearningmodelssuchasdeepneuralnetworks.TheproposedmethodcanhelpaddressthischallengebyenablingthedesignofDPNNsthatareoptimizedforlowpowerconsumption,whilestillprovidinghighaccuracy.Thiscanenablearangeofnewapplicationsthatrelyonedgecomputing,whilealsoreducingtheenvironmentalimpactofcompute-intensivetasks.

OnepotentialapplicationofDPNNsinlow-powerdevicesisinmachinevision.Forexample,wearabledevicessuchassmartglassescoulduseDPNNstoperformreal-timeobjectdetectionandrecognition,withoutrelyingonaconnectiontoamorepowerfuldeviceorinternetconnection.Thiscanenablenewapplicationssuchasenhancedaugmentedrealityexperiences,andobjectrecognitionforthevisuallyimpaired.

AnotherpotentialapplicationofDPNNsisinnaturallanguageprocessing(NLP)tasks,suchasspeechrecognitionandmachinetranslation.Thesetasksarecrucialformanyapplications,includingvirtualassistantsandlanguagetranslationapps.However,theycanbecomputationallyintensive,andmayrequireextensivepreprocessingandfeatureextraction.DPNNscanenablemoreefficientandaccurateNLPtasksonlow-powerdevices,enablingtheseapplicati

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論