




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的三個內角所對的邊分別為,滿足,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.頂角為的等腰三角形 D.頂角為的等腰三角形2.已知函數(shù),下列結論不正確的是(
)A.函數(shù)的最小正周期為B.函數(shù)在區(qū)間內單調遞減C.函數(shù)的圖象關于軸對稱D.把函數(shù)的圖象向左平移個單位長度可得到的圖象3.甲、乙兩位射擊運動員的5次比賽成績(單位:環(huán))如莖葉圖所示,若兩位運動員平均成績相同,則成績較穩(wěn)定(方差較?。┑哪俏贿\動員成績的方差為A.2 B.4 C.6 D.84.在平行四邊形ABCD中,,,E是CD的中點,則()A.2 B.-3 C.4 D.65.(2018年天津卷文)設變量x,y滿足約束條件則目標函數(shù)的最大值為A.6 B.19 C.21 D.456.已知等差數(shù)列中,,則()A. B.C. D.7.已知,則的值域為A. B. C. D.8.祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學家祖沖之的兒子祖暅首先提出來的.祖暅原理的內容是:“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個平面的平面去截三個幾何體,如果得到的三個截面面積總相等,那么,下面關系式正確的是()A.,, B.,,C.,, D.,,9.在中,內角所對的邊分別為,且,,,則()A. B. C. D.10.如圖,某人在點處測得某塔在南偏西的方向上,塔頂仰角為,此人沿正南方向前進30米到達處,測得塔頂?shù)难鼋菫?,則塔高為()A.20米 B.15米 C.12米 D.10米二、填空題:本大題共6小題,每小題5分,共30分。11.在長方體中,,,,如圖,建立空間直角坐標系,則該長方體的中心的坐標為_________.12.在中,分別是角的對邊,,且的周長為5,面積,則=______13.在銳角中,則的值等于.14.若A(-2,3),B(3,-2),C(4,m)三點共線則m的值為________.15.函數(shù)的定義域為__________;16.數(shù)列滿足:,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關于晝夜溫差的線性回歸方程;(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?參考公式:回歸直線的方程,其中,.18.已知,是平面內兩個不共線的非零向量,,,且,,三點共線.(1)求實數(shù)的值;(2)若,,求的坐標;(3)已知,在(2)的條件下,若,,,四點按逆時針順序構成平行四邊形,求點的坐標.19.如圖,已知四棱錐的側棱底面,且底面是直角梯形,,,,,,點在棱上,且.(1)證明:平面;(2)求三棱錐的體積.20.已知函數(shù),數(shù)列中,若,且.(1)求證:數(shù)列是等比數(shù)列;(2)設數(shù)列的前項和為,求證:.21.數(shù)列an,n∈N*各項均為正數(shù),其前n項和為S(1)求證數(shù)列Sn2為等差數(shù)列,并求數(shù)列(2)設bn=24Sn4-1,求數(shù)列bn的前n
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先利用同角三角函數(shù)基本關系得,結合正余弦定理得進而得B,再利用化簡得,得A值進而得C,則形狀可求【詳解】由題即,由正弦定理及余弦定理得即故整理得,故故為頂角為的等腰三角形故選D【點睛】本題考查利用正余弦定理判斷三角形形狀,注意內角和定理,三角恒等變換的應用,是中檔題2、D【解析】
利用余弦函數(shù)的性質對A、B、C三個選項逐一判斷,再利用平移“左加右減”及誘導公式得出,進而得出答案.【詳解】由題意,函數(shù)其最小正周期為,故選項A正確;函數(shù)在上為減函數(shù),故選項B正確;函數(shù)為偶函數(shù),關于軸對稱,故選項C正確把函數(shù)的圖象向左平移個單位長度可得,所以選項D不正確.故答案為D【點睛】本題主要考查了余弦函數(shù)的性質,以及誘導公式的應用,著重考查了推理與運算能力,屬于基礎題.3、A【解析】
根據(jù)平均數(shù)相同求出x的值,再根據(jù)方差的定義計算即可.【詳解】根據(jù)莖葉圖中的數(shù)據(jù)知,甲、乙二人的平均成績相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均數(shù)為=90;根據(jù)莖葉圖中的數(shù)據(jù)知甲的成績波動性小,較為穩(wěn)定(方差較?。约壮煽兊姆讲顬閟1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故選A.【點睛】莖葉圖的優(yōu)點是保留了原始數(shù)據(jù),便于記錄及表示,能反映數(shù)據(jù)在各段上的分布情況.莖葉圖不能直接反映總體的分布情況,這就需要通過莖葉圖給出的數(shù)據(jù)求出數(shù)據(jù)的數(shù)字特征,進一步估計總體情況.4、A【解析】
由平面向量的線性運算可得,再結合向量的數(shù)量積運算即可得解.【詳解】解:由,,所以,,,則,故選:A.【點睛】本題考查了平面向量的線性運算,重點考查了向量的數(shù)量積運算,屬中檔題.5、C【解析】分析:首先畫出可行域,然后結合目標目標函數(shù)的幾何意義確定函數(shù)取得最大值的點,最后求解最大值即可.詳解:繪制不等式組表示的平面區(qū)域如圖所示,結合目標函數(shù)的幾何意義可知目標函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標為:,據(jù)此可知目標函數(shù)的最大值為:.本題選擇C選項.點睛:求線性目標函數(shù)z=ax+by(ab≠0)的最值,當b>0時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最??;當b<0時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.6、C【解析】
,.故選C.7、C【解析】
利用求函數(shù)的周期為,計算即可得到函數(shù)的值域.【詳解】因為,,,因為函數(shù)的周期,所以函數(shù)的值域為,故選C.【點睛】本題考查函數(shù)的周期運算,及利用函數(shù)的周期性求函數(shù)的值域.8、D【解析】
由祖暅原理可知:三個幾何體的體積相等,根據(jù)椎體體積公式即可求解.【詳解】由祖暅原理可知:三個幾何體的體積相等,則,解得,由,解得,所以.故選:D【點睛】本題考查了椎體的體積公式,需熟記公式,屬于基礎題.9、C【解析】
直接利用余弦定理得到答案.【詳解】故答案選C【點睛】本題考查了余弦定理,意在考查學生計算能力.10、B【解析】
設塔底為,塔高為,根據(jù)已知條件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【詳解】設塔底為,塔高為,故,由于,所以在三角形中,由余弦定理得,解得米.故選B.【點睛】本小題主要考查利用余弦定理解三角形,考查空間想象能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先求出點B的坐標,再求出M的坐標.【詳解】由題得B(4,6,0),,因為M點是中點,所以點M坐標為.故答案為【點睛】本題主要考查空間坐標的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.12、【解析】
令正弦定理化簡已知等式,得到,代入題設,求得的長,利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因為,由正弦定理,可得,因為的周長為5,即,所以,又因為,即,所以.【點睛】本題主要考查了正弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.13、2【解析】設由正弦定理得14、-3【解析】
根據(jù)三點共線與斜率的關系即可得出.【詳解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三點共線,∴﹣1=-3-m6,解得m=故答案為-3.【點睛】本題考查了三點共線與斜率的關系,考查了推理能力與計算能力,屬于基礎題.15、【解析】
根據(jù)偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【點睛】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎題.16、【解析】
可通過賦值法依次進行推導,找出數(shù)列的周期,進而求解【詳解】由,,當時,;當時,;當時,;當時,;當時,,當故數(shù)列從開始,以3為周期故故答案為:【點睛】本題考查數(shù)列的遞推公式,能根據(jù)遞推公式找出數(shù)列的規(guī)律是解題的關鍵,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)該協(xié)會所得線性回歸方程是理想的【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù)求出x,y的平均數(shù),根據(jù)求線性回歸系數(shù)的方法,求出系數(shù),把和,代入公式,求出的值,寫出線性回歸方程;(2)根據(jù)所求的線性回歸方程,預報當自變量為10和6時的值,把預報的值同原來表中所給的10和6對應的值作差,差的絕對值不超過2,得到線性回歸方程理想.試題解析:解:(Ⅰ)由數(shù)據(jù)求得,,,由公式求得,所以,所以關于的線性回歸方程為.(Ⅱ)當時,,;同樣,當時,,.所以,該協(xié)會所得線性回歸方程是理想的.點睛:求線性回歸方程的步驟:(1)先把數(shù)據(jù)制成表,從表中計算出的值;(2)計算回歸系數(shù);(3)寫出線性回歸方程.進行線性回歸分析時,要先畫出散點圖確定兩變量具有線性相關關系,然后利用公式求回歸系數(shù),得到回歸直線方程,最后再進行有關的線性分析.18、(1);(2);(3).【解析】
(1)根據(jù),,三點共線,列出向量與共線的表達式,然后根據(jù)坐標求解即可;(2)根據(jù),列坐標即可求解;(3)根據(jù)平行四邊形可以推出對邊的向量相等,根據(jù)向量相等代入坐標求解即可求出點的坐標.【詳解】(1),∵,,三點共線,∴存在實數(shù),使得,即,得,∵,是平面內兩個不共線的非零向量,∴,解得,;(2);(3)∵,,,四點按逆時針順序構成平行四邊形,∴,設,則,∵,∴,解得,即點的坐標為.【點睛】本題主要考查了平面向量共線,平面向量的線性運算,平面向量的相等,屬于一般題.19、(1)見證明;(2)4【解析】
(1)取的三等分點,使,證四邊形為平行四邊形,運用線面平行判定定理證明.(2)三棱錐的體積可以用求出結果.【詳解】(1)證明:取的三等分點,使,連接,.因為,,所以,.因為,,所以,,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)解:因為,,所以的面積為,因為底面,所以三棱錐的高為,所以三棱錐的體積為.因為,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【點睛】本題考查了線面平行的判定定理、三棱錐體積的計算,在證明線面平行時需要構造平行四邊形來證明,三棱錐的體積計算可以選用割、補等方法.20、(1)見解析;(2)見解析【解析】
(1)將代入到函數(shù)表達式中,得,兩邊都倒過來,即可證明數(shù)列是等比數(shù)列;(2)由(1)得出an的通項公式,然后根據(jù)不等式<在求和時進行放縮法的應用,再根據(jù)等比數(shù)列求和公式進行計算,即可證出.【詳解】(1)由函數(shù),在數(shù)列中,若,得:,上式兩邊都倒過來,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴數(shù)列是以1為首項,1為公比的等比數(shù)列.(2)由(1),可知:=1n,∴an=,n∈N*.∵當n∈N*時,不等式<成立.∴Sn=a1+a2+…+an===﹣?<.∴.【點睛】本題主要考查數(shù)列與函數(shù)的綜合應用,根據(jù)條件推出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 有關土地轉讓合同
- 農業(yè)技術推廣與應用案例分析作業(yè)指導書
- 數(shù)據(jù)挖掘與商業(yè)智能實踐指南
- 司機承包合同協(xié)議書
- 2025年呼和浩特貨運從業(yè)資格證繼續(xù)再教育考試答案
- 廣州房地產租賃合同書
- 2025年安徽林業(yè)職業(yè)技術學院單招綜合素質考試題庫參考答案
- 建筑基樁檢測合同
- 年度項目推進時間表與任務分配表
- 軟件測試與驗收標準手冊
- 罪犯正常死亡報告范文
- 《企業(yè)文化概述》課件
- 某地源熱泵畢業(yè)設計
- (三級)工業(yè)機器人運用與維護理論考試復習題庫(含答案)
- 2024年廣東省公務員錄用考試《行測》真題及解析
- 高中英語必背3500單詞表(完整版)
- 房產中介居間服務合同模板樣本
- 海洋工程裝備保險研究
- 2024年廣東省深圳市中考英語試題含解析
- 麻風病防治知識課件
- 3素炒圓白菜 教案
評論
0/150
提交評論