2023年撫順市重點中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023年撫順市重點中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023年撫順市重點中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023年撫順市重點中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023年撫順市重點中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:90,89,90,95,93,94,93,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為()A.92,2 B.92,2.8 C.93,2 D.93,2.82.若實數(shù),滿足約束條件則的取值范圍為()A. B. C. D.3.已知數(shù)列滿足,,則數(shù)列的前5項和()A.15 B.28 C.45 D.664.中,角的對邊分別為,且,則角()A. B. C. D.5.已知函數(shù),其函數(shù)圖像的一個對稱中心是,則該函數(shù)的單調(diào)遞增區(qū)間可以是()A. B. C. D.6.公差不為零的等差數(shù)列的前項和為.若是的等比中項,,則等于()A.18 B.24 C.60 D.907.若函數(shù),則的值為()A. B. C. D.8.在平面直角坐標(biāo)系中,直線與x、y軸分別交于點、,記以點為圓心,半徑為r的圓與三角形的邊的交點個數(shù)為M.對于下列說法:①當(dāng)時,若,則;②當(dāng)時,若,則;③當(dāng)時,M不可能等于3;④M的值可以為0,1,2,3,4,5.其中正確的個數(shù)為()A.1 B.2 C.3 D.49.已知單位向量,,滿足.若點在內(nèi),且,,則下列式子一定成立的是()A. B.C. D.10.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么互斥而不對立的兩個事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域為__________.12.當(dāng)時,的最大值為__________.13.已知,則的最小值是_______.14.?dāng)?shù)列滿足,則等于______.15.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗,則應(yīng)從丙種型號的產(chǎn)品中抽取________件.16.設(shè)等差數(shù)列,的前項和分別為,,若,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的公比,前項和為,且.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.在平面直角坐標(biāo)系中,直線截以坐標(biāo)原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,,當(dāng)時,求直線的方程;(3)設(shè),是圓上任意兩點,點關(guān)于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.19.如圖,已知三棱柱的側(cè)棱垂直于底面,,,點,分別為和的中點.(1)若,求三棱柱的體積;(2)證明:平面;(3)請問當(dāng)為何值時,平面,試證明你的結(jié)論.20.已知向量.(1)若,求的值;(2)當(dāng)時,求與夾角的余弦值.21.已知是同一平面內(nèi)的三個向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且與垂直,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由平均數(shù)與方差的計算公式,計算90,90,93,94,93五個數(shù)的平均數(shù)和方差即可.【詳解】90,89,90,95,93,94,93,去掉一個最高分和一個最低分后是90,90,93,94,93,所以其平均數(shù)為,因此方差為.故選B【點睛】本題主要考查平均數(shù)與方差的計算,熟記公式即可,屬于基礎(chǔ)題型.2、A【解析】

的幾何意義為點與點所在直線的斜率,根據(jù)不等式表示的可行域,可得出取值范圍.【詳解】的幾何意義為點與點所在直線的斜率.畫出如圖的可行域,當(dāng)直線經(jīng)過點時,;當(dāng)直線經(jīng)過點時,.的取值范圍為,故選A.【點睛】本題考查了不等式表示的可行域的畫法,以及目標(biāo)函數(shù)為分式時求取值范圍的方法.3、C【解析】

根據(jù)可知數(shù)列為等差數(shù)列,再根據(jù)等差數(shù)列的求和性質(zhì)求解即可.【詳解】因為,故數(shù)列是以4為公差,首項的等差數(shù)列.故.故選:C【點睛】本題主要考查了等差數(shù)列的判定與等差數(shù)列求和的性質(zhì)與計算,屬于基礎(chǔ)題.4、B【解析】

根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點睛】此題考查利用正弦定理進(jìn)行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.5、D【解析】

根據(jù)對稱中心,結(jié)合的范圍可求得,從而得到函數(shù)解析式;將所給區(qū)間代入求得的范圍,與的單調(diào)區(qū)間進(jìn)行對應(yīng)可得到結(jié)果.【詳解】為函數(shù)的對稱中心,解得:,當(dāng)時,,此時不單調(diào),錯誤;當(dāng)時,,此時不單調(diào),錯誤;當(dāng)時,,此時不單調(diào),錯誤;當(dāng)時,,此時單調(diào)遞增,正確本題正確選項:【點睛】本題考查正切型函數(shù)單調(diào)區(qū)間的求解問題,涉及到利用正切函數(shù)的對稱中心求解函數(shù)解析式;關(guān)鍵是能夠采用整體對應(yīng)的方式,將正切型函數(shù)與正切函數(shù)進(jìn)行對應(yīng),從而求得結(jié)果.6、C【解析】

由等比中項的定義可得,根據(jù)等差數(shù)列的通項公式及前n項和公式,列方程解出和,進(jìn)而求出.【詳解】因為是與的等比中項,所以,即,整理得,又因為,所以,故,故選C.【點睛】該題考查的是有關(guān)等差數(shù)列求和問題,涉及到的知識點有等差數(shù)列的通項,等比中項的定義,等差數(shù)列的求和公式,正確應(yīng)用相關(guān)公式是解題的關(guān)鍵.7、D【解析】

根據(jù)分段函數(shù)的定義域與函數(shù)解析式的關(guān)系,代值進(jìn)行計算即可.【詳解】解:由已知,又,又,所以:.

故選:D.【點睛】本題考查了分段函數(shù)的函數(shù)值計算問題,抓住定義域的范圍,屬于基礎(chǔ)題.8、B【解析】

作出直線,可得,,,分別考慮圓心和半徑的變化,結(jié)合圖形,即可得到所求結(jié)論.【詳解】作出直線,可得,,,①當(dāng)時,若,當(dāng)圓與直線相切,可得;當(dāng)圓經(jīng)過點,即,則或,故①錯誤;②當(dāng)時,若,圓,當(dāng)圓經(jīng)過O時,,交點個數(shù)為2,時,交點個數(shù)為1,則,故②正確;③當(dāng)時,圓,隨著的變化可得交點個數(shù)為1,2,0,不可能等于3,故③正確;④的值可以為0,1,2,3,4,不可以為5,故④錯誤.故選:B.【點睛】本題考查命題的真假判斷與應(yīng)用,考查直線和圓的位置關(guān)系,考查分析能力和計算能力.9、D【解析】

設(shè),對比得到答案.【詳解】設(shè),則故答案為D【點睛】本題考查了向量的計算,意在考查學(xué)生的計算能力.10、D【解析】試題分析:A中兩事件不是互斥事件;B中不是互斥事件;C中兩事件既是互斥事件又是對立事件;D中兩事件是互斥但不對立事件考點:互斥事件與對立事件二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.12、-3.【解析】

將函數(shù)的表達(dá)式改寫為:利用均值不等式得到答案.【詳解】當(dāng)時,故答案為-3【點睛】本題考查了均值不等式,利用一正二定三相等將函數(shù)變形是解題的關(guān)鍵.13、3【解析】

根據(jù),將所求等式化為,由基本不等式,當(dāng)a=b時取到最小,可得最小值?!驹斀狻恳驗椋?,所以(當(dāng)且僅當(dāng)時,等號成立).【點睛】本題考查基本不等式,解題關(guān)鍵是構(gòu)造不等式,并且要注意取最小值時等號能否成立。14、15【解析】

先由,可求出,然后由,代入已知遞推公式即可求解?!驹斀狻抗蚀鸢笧?5.【點睛】本題考查是遞推公式的應(yīng)用,是一道基礎(chǔ)題。15、1【解析】應(yīng)從丙種型號的產(chǎn)品中抽取件,故答案為1.點睛:在分層抽樣的過程中,為了保證每個個體被抽到的可能性是相同的,這就要求各層所抽取的個體數(shù)與該層所包含的個體數(shù)之比等于樣本容量與總體的個體數(shù)之比,即ni∶Ni=n∶N.16、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分?jǐn)?shù)的性質(zhì),將項的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問題,將兩個等差數(shù)列的項的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)根據(jù)條件列出等式,求解公比后即可求解出通項公式;(2)錯位相減法求和,注意對于“錯位”的理解.【詳解】解:(1)由,得,則∴,∴數(shù)列的通項公式為.(2)由,∴,①,②①②,得,∴.【點睛】本題考查等比數(shù)列通項和求和,難度較易.對于等差乘以等比的形式的數(shù)列,求和注意選用錯位相減法.18、(1);(2);(3)見解析【解析】

(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結(jié)合勾股定理,可以求出圓的半徑,進(jìn)而可以求出圓的方程;(2)設(shè)出直線的截距式方程,利用圓的切線性質(zhì),得到一個方程,結(jié)合已知,又得到一個方程,兩個方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設(shè),,則,,,分別求出直線與軸交點坐標(biāo)、直線與軸交點坐標(biāo),求出的表達(dá)式,通過計算可得.【詳解】(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設(shè)直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時直線的方程為.(3)設(shè),,則,,,直線與軸交點坐標(biāo)為,,直線與軸交點坐標(biāo)為,,,為定值2.【點睛】本題考查了圓的垂徑定理、圓的切線性質(zhì)、勾股定理,考查了求直線方程,考查了數(shù)學(xué)運(yùn)算能力.19、(1)4;(2)證明見解析;(3)時,平面,證明見解析.【解析】

(1)直接根據(jù)三棱柱體積計算公式求解即可;(2)利用中位線證明面面平行,再根據(jù)面面平行的性質(zhì)定理證明平面;(3)首先設(shè)為,利用平面列出關(guān)于參數(shù)的方程求解即可.【詳解】(1)∵三棱柱的側(cè)棱垂直于底面,且,,,∴由三棱柱體積公式得:;(2)證明:取的中點,連接,,∵,分別為和的中點,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)連接,設(shè),則由題意知,,∵三棱柱的側(cè)棱垂直于底面,∴平面平面,∵,∴,又點是的中點,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,則時,平面.【點睛】本題考查了三棱柱的體積公式,線面平行的證明,利用線面垂直求參數(shù),屬于難題.20、(1)-3;(2)-.【解析】

(1)根據(jù)向量平行的坐標(biāo)關(guān)系求得(2)根據(jù)向量的數(shù)量積運(yùn)算求得夾角.【詳解】解(1)由題意,得.因為,所以,解得.(2)當(dāng)時,.設(shè)與的夾角為θ,則.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論