版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數(shù)x,y滿足條件,則目標函數(shù)z=2x-y的最小值()A. B.-1 C.0 D.22.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度3.圓與圓的位置關系是()A.內(nèi)切 B.外切 C.相交 D.相離4.在等差數(shù)列中,若,則的值為()A.15 B.21 C.24 D.185.若,則函數(shù)的最小值是()A. B. C. D.6.以橢圓的兩個焦點為直徑的端點的圓與橢圓交于四個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為()A. B. C. D.7.若且,則下列四個不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④8.已知分別為的三邊長,且,則=()A. B. C. D.39.執(zhí)行如圖所示的程序,已知的初始值為,則輸出的的值是()A. B. C. D.10.已知等差數(shù)列中,若,則取最小值時的()A.9 B.8 C.7 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,則的值是_______.12.甲、乙兩名新戰(zhàn)土組成戰(zhàn)術小組進行射擊訓練,已知單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是______.13.設,則的值是____.14.已知,函數(shù)的最小值為__________.15.在平面直角坐標系中,角的頂點與原點重合,始邊與軸的非負半軸重合,終邊過點,則_______;_______.16.已知四棱錐的底面是邊長為的正方形,側棱長均為.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(ω>0)的最小正周期為π.(Ⅰ)求ω的值和f(x)的單調遞增區(qū)間;(Ⅱ)若關于x的方程f(x)﹣m=0在區(qū)間[0,]上有兩個實數(shù)解,求實數(shù)m的取值范圍.18.已知函數(shù),為實數(shù).(1)若對任意,都有成立,求實數(shù)的值;(2)若,求函數(shù)的最小值.19.(1)若對任意的,總有成立,求常數(shù)的值;(2)在數(shù)列中,,求通項;(3)在(2)的條件下,設,從數(shù)列中依次取出第項,第項,第項,按原來的順序組成新數(shù)列,其中試問是否存在正整數(shù),使得且成立?若存在,求出的值;若不存在,說明理由.20.在等差數(shù)列中,為其前項和(),且,.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項為,證明:21.已知點是重心,.(1)用和表示;(2)用和表示.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
線性規(guī)劃問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值。【詳解】可行域如圖所示,當目標函數(shù)平移到A點時z取最小值,故選A【點睛】線性規(guī)劃中線性的目標函數(shù)問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值。2、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.3、B【解析】
由兩圓的圓心距及半徑的關系求解即可得解.【詳解】解:由圓,圓,即,所以圓的圓心坐標為,圓的圓心坐標為,兩圓半徑,則圓心距,即兩圓外切,故選:B.【點睛】本題考查了兩圓的位置關系的判斷,屬基礎題.4、D【解析】
利用等差數(shù)列的性質,將等式全部化為的形式,再計算?!驹斀狻恳驗?,且,則,所以.故選D【點睛】本題考查等差數(shù)列的性質,屬于基礎題。5、B【解析】
直接用均值不等式求最小值.【詳解】當且僅當,即時,取等號.故選:B【點睛】本題考查利用均值不等式求函數(shù)最小值,屬于基礎題.6、D【解析】
四個交點中的任何一個到焦點的距離和都是,然后分析正六邊形中的長度和焦距的關系,從而建立等式求解.【詳解】設橢圓的焦點是,圓與橢圓的四個交點是,設,,,,.故選D.【點睛】本題考查了橢圓的定義和橢圓的性質,屬于基礎題型7、C【解析】
根據(jù)且,可得,,且,,根據(jù)不等式的性質可逐一作出判斷.【詳解】由且,可得,∴,且,,由此可得①當a=0時,不成立,②由,,則成立,③由,,可得成立,④由,若,則不成立,因此,一定成立的是②③,故選:C.【點睛】本題考查不等式的基本性質的應用,屬于基礎題.8、B【解析】
由已知直接利用正弦定理求解.【詳解】在中,由A=45°,C=60°,c=3,由正弦定理得.故選B.【點睛】本題考查三角形的解法,考查正弦定理的應用,屬于基礎題.9、C【解析】
第一次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);接下來繼續(xù)寫出第二次、第三次運算,直至,然后輸出的值.【詳解】初始值第一次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);第二次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);第三次運行:,不滿足循環(huán)條件因而繼續(xù)循環(huán),跳出循環(huán);此時.故選:C【點睛】本題是一道關于循環(huán)結構的問題,需要借助循環(huán)結構的相關知識進行解答,需掌握循環(huán)結構的兩種形式,屬于基礎題.10、C【解析】
是等差數(shù)列,先根據(jù)已知求出首項和公差,再表示出,由的最小值確定n。【詳解】由題得,,解得,那么,當n=7時,取到最小值-49.故選:C【點睛】本題考查等差數(shù)列前n項和,是基礎題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
計算出的值,然后利用誘導公式可求得的值.【詳解】,,則,因此,.故答案為:.【點睛】本題考查利用誘導公式求值,同時也考查了同角三角函數(shù)基本關系的應用,考查計算能力,屬于基礎題.12、【解析】
利用對立事件概率計算公式和相互獨立事件概率乘法公式能求出至少有一發(fā)擊中靶心的概率.【詳解】甲、乙兩名新戰(zhàn)土組成戰(zhàn)術小組進行射擊訓練,單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是:.故答案為0.1.【點睛】本題考查概率的求法,考查對立事件概率計算公式和相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,屬于基礎題.13、【解析】
根據(jù)二倍角公式得出,再根據(jù)誘導公式即可得解.【詳解】解:由題意知:故,即.故答案為.【點睛】本題考查了二倍角公式和誘導公式的應用,屬于基礎題.14、5【解析】
變形后利用基本不等式可得最小值.【詳解】∵,∴4x-5>0,∴當且僅當時,取等號,即時,有最小值5【點睛】本題考查利用基本不等式求最值,湊出可利用基本不等式的形式是解決問題的關鍵,使用基本不等式時要注意“一正二定三相等”的法則.15、【解析】
根據(jù)三角函數(shù)的定義直接求得的值,即可得答案.【詳解】∵角終邊過點,,∴,,,∴.故答案為:;.【點睛】本題考查三角函數(shù)的定義,考查運算求解能力,屬于基礎題.16、.【解析】
根據(jù)棱錐的結構特點,確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長為的正方形,側棱長均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側棱的中點,圓柱的底面半徑為,一個底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),函數(shù)的增區(qū)間為.(Ⅱ)【解析】
(Ⅰ)利用三角函數(shù)恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性、單調性,即可求得結論;(Ⅱ)由題意,函數(shù)的圖象和直線在區(qū)間上有兩個不同的交點,利用正弦函數(shù)的定義域和值域,以及正弦函數(shù)的圖象特征,即可求解的取值范圍.【詳解】(Ⅰ)由題意,函數(shù)所以函數(shù)的最小正周期為,∴,即.令,求得,可得函數(shù)的增區(qū)間為.(Ⅱ)在區(qū)間上,則,則,即,關于x的方程在區(qū)間上有兩個實數(shù)解,則的圖象和直線在區(qū)間上有兩個不同的交點,則.【點睛】本題主要考查了三角恒等變換,以及正弦型函數(shù)的圖象與性質的應用,其中解答中熟記三角函數(shù)的圖象與性質,以及把關于x的方程在區(qū)間上有兩個實數(shù)解,轉化為兩個函數(shù)圖象的交點個數(shù)是解答的關鍵,著重考查了轉化思想,以及推理與運算能力,屬于中檔試題.18、(1);(2).【解析】
(1)根據(jù)二次函數(shù)的解析式寫出對稱軸即可;(2)根據(jù)對稱軸是否在定義域內(nèi)進行分類討論,由二次函數(shù)的圖象可分別得出函數(shù)的最小值.【詳解】(1)對任意,都有成立,則函數(shù)的對稱軸為,即,解得實數(shù)的值為.(2)二次函數(shù),開口向上,對稱軸為①若,即時,函數(shù)在上單調遞增,的最小值為;②若,即時,函數(shù)在上單調遞減,的最小值為;③若,即時,函數(shù)在上單調遞減,在上單調遞增,的最小值為;綜上可得:【點睛】本題考查二次函數(shù)的圖象與性質,應用了分類討論的思想,屬于中檔題.19、(1)(2)(3)存在,,或【解析】
由題設得恒成立,所以,由和知,,且,由此能推導出假設存在正整數(shù)m,r滿足題設,由,,又得,于是,由此能推導出存在正整數(shù)m,r滿足題設,,或,.【詳解】由題設得,即恒成立,所以,由題設又由得,,且,即是首項為1,公比為2的等比數(shù)列,所以即為所求.假設存在正整數(shù)m,r滿足題設,由知,顯然,又得,,即是以為首項,為公比的等比數(shù)列.于是,由得,m,,所以或15,當時,,;當時,,;綜上,存在正整數(shù)m,r滿足題設,,或,【點睛】本題主要考查了數(shù)列中參數(shù)的求法、等差數(shù)列的通項公式和以極限為載體考查數(shù)列性質的綜合運用,屬于難題.20、(1);(2)見解析【解析】
(1)運用等差數(shù)列的通項公式和求和公式,解方程組,可得首項和公差,即可得到所求通項;(2)化簡,再利用裂項相消求數(shù)列的和,化簡整理,即可證得.【詳解】(1)設等差數(shù)列的公差是,由,,得解得,,∴.(2)由(1)知,,∴,,因為,則成立.【點睛】本題考查等差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版實習合同模板:實習期間實習成果轉化3篇
- 2025版木結構景觀清包施工合同示范文本4篇
- 二零二五年度虛擬現(xiàn)實內(nèi)容創(chuàng)作者免責聲明合同范本4篇
- 2025版小型沼氣項目設備研發(fā)、生產(chǎn)、安裝及運營維護合同3篇
- 增值稅及其會計處理教學課件
- 2025版新能源汽車動力電池回收利用合同范本4篇
- 2025版小麥種子市場調研與風險評估合同2篇
- 2025版學校臨時教師聘用合同實施細則3篇
- 二零二五版幕墻工程風險管理與保險合同4篇
- 安徽省蚌埠市高三第三次教學質量檢查語文試題(含答案)
- 定額〔2025〕1號文-關于發(fā)布2018版電力建設工程概預算定額2024年度價格水平調整的通知
- 2024年城市軌道交通設備維保及安全檢查合同3篇
- 【教案】+同一直線上二力的合成(教學設計)(人教版2024)八年級物理下冊
- 湖北省武漢市青山區(qū)2023-2024學年七年級上學期期末質量檢測數(shù)學試卷(含解析)
- 單位往個人轉賬的合同(2篇)
- 科研倫理審查與違規(guī)處理考核試卷
- GB/T 44101-2024中國式摔跤課程學生運動能力測評規(guī)范
- 高危妊娠的評估和護理
- 2024年山東鐵投集團招聘筆試參考題庫含答案解析
- 2023年高考全國甲卷數(shù)學(理)試卷【含答案】
- 數(shù)獨題目A4打印版無答案
評論
0/150
提交評論