版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)數(shù)列是等差數(shù)列,是其前項(xiàng)和,且,,則下列結(jié)論中錯(cuò)誤的是()A. B. C. D.與均為的最大值2.某同學(xué)使用計(jì)算器求30個(gè)數(shù)據(jù)的平均數(shù)時(shí),錯(cuò)將其中一個(gè)數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實(shí)際平均數(shù)的差是()A.3.5 B.3 C.-0.5 D.-33.若向量,,且,則=()A. B.- C. D.-4.已知某運(yùn)動員每次投籃命中的概率都為40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員三次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計(jì),該運(yùn)動員三次投籃恰有兩次命中的概率為()A.0.35 B.0.25 C.0.20 D.0.155.過曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為()A. B. C. D.6.己知向量,.若,則m的值為()A. B.4 C.- D.-47.已知等比數(shù)列,若,則()A. B. C.4 D.8.已知是定義在上的奇函數(shù),且當(dāng)時(shí),,那么()A. B. C. D.9.取一根長度為的繩子,拉直后在任意位置剪斷,則剪得兩段繩有一段長度不小于的概率是()A. B. C. D.10.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形二、填空題:本大題共6小題,每小題5分,共30分。11.若Sn為等比數(shù)列an的前n項(xiàng)的和,8a12.已知圓上有兩個(gè)點(diǎn)到直線的距離為3,則半徑的取值范圍是________13.終邊經(jīng)過點(diǎn),則_____________14.中,內(nèi)角、、所對的邊分別是、、,已知,且,,則的面積為_____.15.設(shè)ω為正實(shí)數(shù).若存在a、b(π≤a<b≤2π),使得16.等比數(shù)列的首項(xiàng)為,公比為,記,則數(shù)列的最大項(xiàng)是第___________項(xiàng).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某市食品藥品監(jiān)督管理局開展2019年春季校園餐飲安全檢查,對本市的8所中學(xué)食堂進(jìn)行了原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評分,其評分情況如下表所示:中學(xué)編號12345678原料采購加工標(biāo)準(zhǔn)評分x10095938382757066衛(wèi)生標(biāo)準(zhǔn)評分y8784838281797775(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(精確到0.1)(2)現(xiàn)從8個(gè)被檢查的中學(xué)食堂中任意抽取兩個(gè)組成一組,若兩個(gè)中學(xué)食堂的原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評分均超過80分,則組成“對比標(biāo)兵食堂”,求該組被評為“對比標(biāo)兵食堂”的概率.參考公式:,;參考數(shù)據(jù):,.18.解下列方程(1);(2);19.已知等比數(shù)列的各項(xiàng)為正數(shù),為其前項(xiàng)的和,,.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)的和.20.已知數(shù)列是等差數(shù)列,,.(1)從第幾項(xiàng)開始;(2)求數(shù)列前n項(xiàng)和的最大值.21.某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求圖中的值;(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分,眾數(shù),中位數(shù);(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)等差數(shù)列的性質(zhì),結(jié)合,,分析出錯(cuò)誤結(jié)論.【詳解】由于,,所以,,,所以,與均為的最大值.而,所以,所以C選項(xiàng)結(jié)論錯(cuò)誤.故選:C.【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),考查分析與推理能力,屬于基礎(chǔ)題.2、D【解析】
因?yàn)殄e(cuò)將其中一個(gè)數(shù)據(jù)105輸入為15,所以此時(shí)求出的數(shù)比實(shí)際的數(shù)差是,因此平均數(shù)之間的差是.故答案為D3、B【解析】
根據(jù)向量平行的坐標(biāo)表示,列出等式,化簡即可求出.【詳解】因?yàn)?,所以,即,解得,故選B.【點(diǎn)睛】本題主要考查向量平行的坐標(biāo)表示以及同角三角函數(shù)基本關(guān)系的應(yīng)用.4、B【解析】
已知三次投籃共有20種,再得到恰有兩次命中的事件的種數(shù),然后利用古典概型的概率公式求解.【詳解】三次投籃共有20種,恰有兩次命中的事件有:191,271,932,812,393,有5種∴該運(yùn)動員三次投籃恰有兩次命中的概率為故選:B【點(diǎn)睛】本題主要考古典概型的概率求法,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、C【解析】
設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時(shí),∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點(diǎn)F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時(shí),∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),分析得到當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時(shí),∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.6、B【解析】
根據(jù)兩個(gè)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】依題意,由于,所以,解得.故選B.【點(diǎn)睛】本小題主要考查兩個(gè)向量垂直的坐標(biāo)表示,考查向量減法的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.7、D【解析】
利用等比數(shù)列的通項(xiàng)公式求得公比,進(jìn)而求得的值.【詳解】∵,∴.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、C【解析】試題分析:由題意得,,故,故選C.考點(diǎn):分段函數(shù)的應(yīng)用.9、A【解析】
設(shè)其中一段的長度為,可得出另一段長度為,根據(jù)題意得出的取值范圍,再利用幾何概型的概率公式可得出所求事件的概率.【詳解】設(shè)其中一段的長度為,可得出另一段長度為,由于剪得兩段繩有一段長度不小于,則或,可得或.由于,所以,或.由幾何概型的概率公式可知,事件“剪得兩段繩有一段長度不小于”的概率為,故選:A.【點(diǎn)睛】本題考查長度型幾何概型概率公式的應(yīng)用,解題時(shí)要將問題轉(zhuǎn)化為區(qū)間型的幾何概型來計(jì)算概率,考查分析問題以及運(yùn)算求解能力,屬于中等題.10、A【解析】
根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項(xiàng):【點(diǎn)睛】本題考查相等向量、垂直關(guān)系的向量表示,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、-7【解析】設(shè)公比為q,則8a1q=-a112、【解析】
由圓上有兩個(gè)點(diǎn)到直線的距離為3,先求出圓心到直線的距離,得到不等關(guān)系式,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,又因?yàn)閳A上有兩個(gè)點(diǎn)到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中合理應(yīng)用圓心到直線的距離,結(jié)合圖象得到半徑的不等關(guān)系式是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于中檔試題.13、【解析】
根據(jù)正弦值的定義,求得正弦值.【詳解】依題意.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)角的終邊上一點(diǎn)的坐標(biāo)求正弦值,屬于基礎(chǔ)題.14、【解析】
由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查利用余弦定理解三角形以及三角形面積公式的應(yīng)用,解題時(shí)要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.15、ω∈[【解析】
由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價(jià)于:存在整數(shù)ωπ當(dāng)ω≥4時(shí),區(qū)間[ωπ,2ωπ]的長度不小于4π當(dāng)0<ω<4時(shí),注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點(diǎn)睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.16、【解析】
求得,則可將問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】由等比數(shù)列的通項(xiàng)公式可得,,則問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時(shí),取得最大值,此時(shí)為偶數(shù).因此,的最大項(xiàng)是第項(xiàng).故答案為:.【點(diǎn)睛】本題考查等比數(shù)列前項(xiàng)積最值的計(jì)算,將問題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由題意計(jì)算、,求出回歸系數(shù),寫出線性回歸方程;(2)用列舉法寫出基本事件數(shù),計(jì)算所求的概率值.【詳解】(1)由題意得:,,,.故所求的線性回歸方程為:.(2)從8個(gè)中學(xué)食堂中任選兩個(gè),共有共28種結(jié)果:,,,,,,,,,,,,,,,,,,,,,,,,,,,.其中原料采購加工標(biāo)準(zhǔn)的評分和衛(wèi)生標(biāo)準(zhǔn)的評分均超過80分的有10種結(jié)果:,,,,,,,,,,所以該組被評為“對比標(biāo)兵食堂”的概率為.【點(diǎn)睛】本題考查了線性回歸方程的求解,考查了利用列舉法求古典概型的概率問題,是基礎(chǔ)題.18、(1)或;(2);【解析】
(1)由,得,解方程即可.(2)由已知得到,解得即可.【詳解】(1),,或,或.(2),,解得.【點(diǎn)睛】本題考查了指數(shù)型、對數(shù)型方程,考查了指數(shù)、對數(shù)的運(yùn)算,屬于基礎(chǔ)題.19、(Ⅰ)(Ⅱ),【解析】
(Ⅰ)設(shè)正項(xiàng)等比數(shù)列的公比為且,由已知列式求得首項(xiàng)與公比,則數(shù)列的通項(xiàng)公式可求;(Ⅱ)由已知求得,再由數(shù)列的分組求和即可.【詳解】(Ⅰ)由題意知,等比數(shù)列的公比,且,所以,解得,或(舍去),則所求數(shù)列的通項(xiàng)公式為.(Ⅱ)由題意得,故【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式及前項(xiàng)和公式的應(yīng)用,同時(shí)考查了待定系數(shù)法求數(shù)列的通項(xiàng)公式和分組求和法求數(shù)列的和.20、(1)從第27項(xiàng)開始(2)【解析】
(1)寫出通項(xiàng)公式解不等式即可;(2)由(1)得數(shù)列最后一個(gè)負(fù)項(xiàng)為取得最大值處即可求解【詳解】(1).解得.所以從第27項(xiàng)開始.(2)由上可知當(dāng)時(shí),最大,最大為.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的最值,考查推理能力,是基礎(chǔ)題21、(1)0.005;(2)平均分為73,眾數(shù)為65,中位數(shù)為;(3)10【解析】
(1)根據(jù)頻率之和為1,直接列式計(jì)算即可;(2)平均數(shù)等于每組的中間值乘以該組頻率,再求和;眾數(shù)指頻率最大的一組的中間值;中位數(shù)兩端的小長方形面積之和均為0.5;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作心得體會總結(jié)
- 2025年度典當(dāng)物品鑒定與拍賣代理服務(wù)合同3篇
- 二零二五年度軍事通信保密協(xié)議及網(wǎng)絡(luò)維護(hù)合同3篇
- 二零二五年度幼兒早期教育托管班入園協(xié)議書3篇
- 二零二五年度養(yǎng)殖場租賃與農(nóng)業(yè)生態(tài)循環(huán)經(jīng)濟(jì)發(fā)展合作合同3篇
- 2025年度新型建筑材料內(nèi)部承包協(xié)議書3篇
- 2025年度農(nóng)村保潔員崗位職責(zé)及待遇合同
- 2025年度水產(chǎn)養(yǎng)殖廢棄物處理設(shè)施建設(shè)合作協(xié)議合同3篇
- 2025年度教育培訓(xùn)機(jī)構(gòu)掛靠合作協(xié)議書標(biāo)準(zhǔn)模板3篇
- 二零二五年度農(nóng)業(yè)現(xiàn)代化土地承包合作框架協(xié)議3篇
- 2023年鞍山市海城市教育局畢業(yè)生招聘筆試真題
- 遼寧省撫順縣2024-2025學(xué)年九年級上學(xué)期期末物理試卷(含答案)
- 2024-2025學(xué)年安徽省合肥市巢湖市三年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 浙江省寧波市九校2023-2024學(xué)年高一上期末聯(lián)考生物試題
- 乳腺中心建設(shè)方案
- 提高有風(fēng)險(xiǎn)患者預(yù)防跌倒墜床護(hù)理措施落實(shí)率品管圈PDCA案例匯報(bào)
- 安環(huán)部2025年度工作計(jì)劃
- 2024年行政執(zhí)法人員執(zhí)法資格知識考試題庫(附含答案)
- 交通運(yùn)輸安全風(fēng)險(xiǎn)管控制度
- 北京城市學(xué)院《食品質(zhì)量檢測技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 無人駕駛 物流行業(yè)市場調(diào)研分析報(bào)告
評論
0/150
提交評論