版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為()A. B. C. D.2.在中,已知三個內(nèi)角為,,滿足,則().A. B.C. D.3.在ΔABC中,若,則=()A.6 B.4 C.-6 D.-44.若向量的夾角為,且,,則向量與向量的夾角為()A. B. C. D.5.將函數(shù)f(x)=sin(ωx+)(ω>0)的圖象向左平移個單位,所得到的函數(shù)圖象關(guān)于y軸對稱,則函數(shù)f(x)的最小正周期不可能是()A. B. C. D.6.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.7.已知等比數(shù)列的前n項和為,若,,則()A. B. C.1 D.28.一個幾何體的三視圖分別是一個正方形,一個矩形,一個半圓,尺寸大小如圖所示,則該幾何體的體積是()A. B. C. D.9.一組數(shù)平均數(shù)是,方差是,則另一組數(shù),的平均數(shù)和方差分別是()A. B.C. D.10.設(shè)集合,集合,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線:與直線:互相平行,則直線與之間的距離為______.12.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.13.在等比數(shù)列中,若,則__________.14.已知數(shù)列的前項和為,,,則__________.15.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=16.關(guān)于的不等式,對于恒成立,則實數(shù)的取值范圍為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知平面向量,,.(1)若,求的值;(2)若,與共線,求實數(shù)的值.18.在中,分別是角的對邊,.(1)求的值;(2)若的面積,,求的值.19.已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求數(shù)列{an}的通項公式:(2)若對任意的n∈N*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.20.已知數(shù)列滿足,數(shù)列滿足,且(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.某種筆記本的單價是5元,買個筆記本需要y元,試用函數(shù)的三種表示法表示函數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,再利用向量法求出異面直線AE與BF所成角的余弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,E,F(xiàn)分別是C1D1,CC1的中點,A(2,0,0),E(0,1,2),B(2,2,0),F(xiàn)(0,2,1),=(﹣2,1,2),=(﹣2,0,1),設(shè)異面直線AE與BF所成角的平面角為θ,則cosθ===,∴異面直線AE與BF所成角的余弦值為.故選D.【點睛】本題考查異面直線所成角的余弦值的求法,注意向量法的合理運用,屬于基礎(chǔ)題.2、C【解析】
利用正弦定理、余弦定理即可得出.【詳解】由正弦定理,以及,得,不妨取,則,又,.故選:C.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.3、C【解析】
向量的點乘,【詳解】,選C.【點睛】向量的點乘,需要注意后面乘的是兩向量的夾角的余弦值,本題如果直接計算的話,的夾角為∠BAC的補角4、B【解析】
結(jié)合數(shù)量積公式可求得、、的值,代入向量夾角公式即可求解.【詳解】設(shè)向量與的夾角為,因為的夾角為,且,,所以,,所以,又因為所以,故選B【點睛】本題考查向量的數(shù)量積公式,向量模、夾角的求法,考查化簡計算的能力,屬基礎(chǔ)題.5、D【解析】
利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對稱性和周期性,求得函數(shù)的最小正周期為,由此得出結(jié)論.【詳解】解:將函數(shù)的圖象向左平移個單位,可得的圖象,根據(jù)所得到的函數(shù)圖象關(guān)于軸對稱,可得,即,.函數(shù)的最小正周期為,則函數(shù)的最小正周期不可能是,故選.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對稱性和周期性,屬于基礎(chǔ)題.6、B【解析】
試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.7、C【解析】
利用等比數(shù)列的前項和公式列出方程組,能求出首項.【詳解】等比數(shù)列的前項和為,,,,解得,.故選:.【點睛】本題考查等比數(shù)列的首項的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.8、C【解析】
由給定的幾何體的三視圖得到該幾何體表示一個底面半徑為1,母線長為2的半圓柱,結(jié)合圓柱的體積公式,即可求解.【詳解】由題意,根據(jù)給定的幾何體的三視圖可得:該幾何體表示一個底面半徑為1,母線長為2的半圓柱,所以該半圓柱的體積為.故選:C.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.9、B【解析】
直接利用公式:平均值方差為,則的平均值和方差為:得到答案.【詳解】平均數(shù)是,方差是,的平均數(shù)為:方差為:故答案選B【點睛】本題考查了平均數(shù)和方差的計算:平均數(shù)是,方差是,則的平均值和方差為:.10、B【解析】
已知集合A,B,取交集即可得到答案.【詳解】集合,集合,則故選B【點睛】本題考查集合的交集運算,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】
利用兩直線平行,先求出,再由兩平行線的距離公式求解即可【詳解】由題意,,所以,,所以直線:,化簡得,由兩平行線的距離公式:.故答案為:10【點睛】本題主要考查兩直線平行的充要條件,兩直線和平行的充要條件是,考查兩平行線間的距離公式,屬于基礎(chǔ)題.12、【解析】正方體體積為8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點睛:設(shè)幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側(cè)棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.13、80【解析】
由即可求出【詳解】因為是等比數(shù)列,所以,所以即故答案為:80【點睛】本題考查的是等比數(shù)列的性質(zhì),較簡單14、【解析】
先利用時,求出的值,再令,由得出,兩式相減可求出數(shù)列的通項公式,再將的表達式代入,可得出.【詳解】當(dāng)時,則有,;當(dāng)時,由得出,上述兩式相減得,,得且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,則,,那么,因此,,故答案為.【點睛】本題考查等比數(shù)列前項和與通項之間的關(guān)系,同時也考查了等比數(shù)列求和,一般在涉及與的遞推關(guān)系求通項時,常用作差法來求解,考查計算能力,屬于中等題.15、【解析】
根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為?!军c睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。16、或【解析】
利用換元法令,則對任意的恒成立,再對分兩種情況討論,令求出函數(shù)的最小值,即可得答案.【詳解】令,則對任意的恒成立,(1)當(dāng),即時,上式顯然成立;(2)當(dāng),即時,令①當(dāng)時,,顯然不成立,故不成立;②當(dāng)時,,∴解得:綜上所述:或.故答案為:或.【點睛】本題考查含絕對值函數(shù)的最值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意分段函數(shù)的最值求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)4.【解析】
(1)結(jié)合已知求得:,利用平面向量的模的坐標表示公式計算得解.(2)求得:,利用與共線可列方程,解方程即可.【詳解】解:(1),所以.(2),因為與共線,所以,解得.【點睛】本題主要考查了平面向量的模的坐標公式及平面向量平行的坐標關(guān)系,考查方程思想及計算能力,屬于基礎(chǔ)題.18、(1)4;(2)【解析】
(1)利用兩角差的正弦和正弦定理將條件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面積公式求得,結(jié)合余弦定理可得,解方程即可得答案.【詳解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【點睛】本題考查兩角差的正弦、正弦定理、余弦定理的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力.19、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】
(1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基礎(chǔ)之上解不等式可得實數(shù)的取值范圍.【詳解】(1)由已知,根據(jù)遞推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,當(dāng)n≥2時,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2時,an=11+2×(1﹣()n﹣1),又a1=1也滿足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因為3﹣2()n﹣1>0,所以,當(dāng)n為奇數(shù)時,3﹣2()n﹣1∈[1,3);當(dāng)n為偶數(shù)時,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值為4,最小值為1.對于任意的正整數(shù)n都有成立,所以1≤m.即所求實數(shù)m的取值范圍是{m|1≤m}.【點睛】本題主要考查數(shù)列的遞推公式知識和不等式的相關(guān)知識,式子繁瑣,易錯,屬于中檔題.20、(1);(2)【解析】
(1)由等差數(shù)列和等比數(shù)列的定義、可得所求通項公式;(2)求得,由數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式可得所求和.【詳解】解:(1)∵,即,,∴為首項為1,公差為2的等差數(shù)列,即;∵,即有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電力系統(tǒng)電力物資安全儲存與運輸合同3篇
- 二零二五年建筑公司內(nèi)部工程承包合同范本5篇
- 臨時服務(wù)協(xié)議:專項工作期間合作意向書版A版
- 2025年度農(nóng)家樂鄉(xiāng)村旅游服務(wù)合同范本3篇
- 2024版有關(guān)房屋分配協(xié)議書
- 2024租賃期滿設(shè)備回收合同
- 二零二五年租房合同涉及的環(huán)保要求3篇
- 二零二五版出租車行業(yè)駕駛員勞動合同執(zhí)行規(guī)范6篇
- 二零二五年能源設(shè)施工程設(shè)計合同補充協(xié)議3篇
- 2024版智能可穿戴設(shè)備設(shè)計與生產(chǎn)合同
- 道德經(jīng)中德文對照版
- 公路工程隨機抽樣一覽表(路基路面現(xiàn)場測試隨機選點方法自動計算)
- 2021版中醫(yī)癥候醫(yī)保對應(yīng)中醫(yī)癥候醫(yī)保2
- 2023年山東省青島市中考化學(xué)試題(含答案解析)
- 商業(yè)計劃書(BP)產(chǎn)品與服務(wù)的撰寫秘籍
- 安徽華塑股份有限公司年產(chǎn) 4萬噸氯化石蠟項目環(huán)境影響報告書
- 公司章程(二個股東模板)
- 世界奧林匹克數(shù)學(xué)競賽6年級試題
- 藥用植物學(xué)-課件
- 文化差異與跨文化交際課件(完整版)
- 國貨彩瞳美妝化消費趨勢洞察報告
評論
0/150
提交評論