版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究摘要
肺癌是一種常見(jiàn)的惡性腫瘤,早期發(fā)現(xiàn)和診斷對(duì)治療和預(yù)后的影響非常重要。醫(yī)學(xué)影像學(xué)成為肺癌診斷的重要手段之一。本文利用醫(yī)學(xué)影像肺癌診斷中常用的CT影像數(shù)據(jù),基于改進(jìn)深度學(xué)習(xí)的算法進(jìn)行研究。首先,分析常用的卷積神經(jīng)網(wǎng)絡(luò)(CNN)的局限性,提出了改進(jìn)后的卷積神經(jīng)網(wǎng)絡(luò)(improvedCNN)算法。然后,在處理醫(yī)學(xué)影像數(shù)據(jù)時(shí),針對(duì)噪聲和數(shù)據(jù)維度較高的問(wèn)題,提出了一種基于主成分分析(PCA)和小波變換(Wavelet)的數(shù)據(jù)預(yù)處理方法,以提升實(shí)驗(yàn)結(jié)果的準(zhǔn)確度和魯棒性。實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法相比,improvedCNN算法在肺癌識(shí)別中的準(zhǔn)確性和穩(wěn)定性均有所提升。同時(shí),所提出的數(shù)據(jù)預(yù)處理方法也能夠有效地降低噪聲和提升預(yù)測(cè)能力。
關(guān)鍵詞:醫(yī)學(xué)影像、肺癌識(shí)別、卷積神經(jīng)網(wǎng)絡(luò)、PCA、Wavelet
Abstract
Lungcancerisacommonmalignanttumor,anditsearlydetectionanddiagnosishaveasignificantimpactonthetreatmentandprognosis.Medicalimaginghasbecomeanimportantmeansforlungcancerdiagnosis.Inthispaper,weproposealungcancerrecognitionalgorithmbasedonimproveddeeplearningusingCTimagescommonlyusedinmedicalimaging.Firstly,weanalyzethelimitationsoftheconventionalconvolutionalneuralnetwork(CNN),andproposeanimprovedCNNalgorithmtoovercometheselimitations.Secondly,toaddresstheissueofhighnoiseanddimensionalityofmedicalimagedata,weproposeadatapreprocessingmethodbasedonprincipalcomponentanalysis(PCA)andwavelettransformtoimprovetheaccuracyandrobustnessoftheexperimentalresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilityinlungcancerrecognitioncomparedtothetraditionalCNNalgorithm.Moreover,theproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancepredictionability.
Keywords:medicalimaging;lungcancerrecognition;convolutionalneuralnetwork;PCA;WaveletMedicalimagingplaysavitalroleintheearlydetectionanddiagnosisoflungcancer.However,theaccuracyandrobustnessoflungcancerrecognitionalgorithmsdependonthequalityandcomplexityofthemedicalimages.Therefore,thereisaneedforadvanceddatapreprocessingtechniquestoimprovetheperformanceoflungcancerrecognitionalgorithms.
Inthisstudy,weproposeanoveldatapreprocessingmethodthatcombinesprincipalcomponentanalysis(PCA)andwavelettransformtoenhancetheaccuracyandstabilityoflungcancerrecognitionalgorithms.PCAisusedtoreducethedimensionalityoftheinputimagesandremoveredundantinformation,whilewavelettransformisusedtodecomposetheinputimagesintomultiplefrequencybandsandextractrelevantfeatures.
Toevaluatetheeffectivenessofourproposedmethod,weemployaconvolutionalneuralnetwork(CNN)algorithmforlungcancerrecognition.WeusebothtraditionalCNNandimprovedCNNalgorithmstocomparetheaccuracyandstabilityoftherecognitionresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilitythanthetraditionalCNNalgorithm.Moreover,ourproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancethepredictionabilityofthelungcancerrecognitionalgorithm.
Inconclusion,ourproposeddatapreprocessingmethodthatcombinesPCAandwavelettransformisaneffectiveapproachtoenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms.ThismethodcanbefurtherappliedtoothermedicalimagingproblemstoimprovetheperformanceofexistingalgorithmsFurthermore,thesuccessofourmethodhighlightstheimportanceofdatapreprocessinginmedicalimageanalysis.Preprocessingtechniquescansignificantlyaffecttheaccuracyandrobustnessofmedicalimagerecognitionalgorithms,asmedicalimagesareoftensubjecttovariationsinresolution,noise,andcontrast.Assuch,combiningmultiplepreprocessingtechniques,suchaswavelettransformandPCA,canhelptoaddresstheseissuesandproducemoreaccuratepredictions.
Movingforward,thereisroomforfurtherinvestigationandrefinementofourproposedmethod.Forinstance,exploringotherdimensionalityreductionalgorithms,suchast-SNEorLLE,mayyieldevenbetterresults.Additionally,applyingdifferentwaveletfunctionsorscalingfactorscouldimprovetheeffectivenessofwavelettransforminreducingnoiseandenhancingfeaturesinmedicalimages.
Overall,ourstudydemonstratesthepotentialofcombiningPCAandwavelettransformformedicalimagerecognition.Byutilizingthesetechniques,ourproposeddatapreprocessingmethodcanenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms,pavingthewayforimproveddiagnosesandtreatmentplansInadditiontothemethodsdiscussedabove,thereareseveralothertechniquesthatcanbeusedtoimprovemedicalimagerecognition.Oneapproachistousedeeplearningalgorithms,whichhaveshownpromisingresultsinavarietyofmedicalimagingapplications.Deeplearningalgorithmsuseartificialneuralnetworkstoautomaticallylearnfeaturesfromthedata,andhavebeenshowntobeeffectiveintaskssuchastumordetectionandsegmentation.
Anotherapproachistoincorporateaprioriknowledgeintotherecognitionprocess.Forexample,inlungcancerrecognition,priorknowledgeabouttheshapeandtextureoflungnodulescanbeusedtoimprovetheaccuracyoftherecognitionalgorithm.Thiscanbeachievedthroughtheuseofshapeandtextureanalysistechniques,suchasfractalanalysisorgray-levelco-occurrencematrixanalysis.
Finally,itisimportanttoconsiderthepracticallimitationsofmedicalimagerecognitionalgorithms.Onemajorlimitationistheavailabilityoflarge,high-qualitydatasetsfortrainingandtesting.Withoutaccesstolargedatasets,itcanbedifficulttodevelopaccurateandrobustrecognitionalgorithms.Additionally,thecomputationalresourcesrequiredtotrainandtestthesealgorithmscanbesubstantial,whichmaylimittheirpracticalapplicationinclinicalsettings.
Despitetheselimitations,advancesinmedicalimagerecognitionhavethepotentialtorevolutionizethefieldofdiagnosisandtreatment.Bycombiningadvancedimagingtechnologieswithsophisticatedanalys
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京江蘇南京師范大學(xué)食品與制藥工程學(xué)院招聘筆試歷年參考題庫(kù)附帶答案詳解
- 寵物領(lǐng)養(yǎng)后的教育考核試卷
- 信息技術(shù)在人力資源管理中的應(yīng)用考核試卷
- 電力設(shè)施故障預(yù)測(cè)與健康管理技術(shù)
- 地質(zhì)勘探地震勘探儀器在地震勘探與環(huán)境保護(hù)的可持續(xù)發(fā)展考核試卷
- 生物醫(yī)藥企業(yè)的品牌建設(shè)與營(yíng)銷策略
- 監(jiān)理檢測(cè)設(shè)備租賃合同(2篇)
- 醫(yī)療器械在創(chuàng)傷急救中的應(yīng)用考核試卷
- 干部休養(yǎng)所節(jié)能減排與環(huán)境保護(hù)考核試卷
- 放射性廢物處理與處置的輻射防護(hù)優(yōu)化策略考核試卷
- 2024年全國(guó)統(tǒng)一高考英語(yǔ)試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí) CCAA年度確認(rèn) 試題與答案
- 2022屆“一本、二本臨界生”動(dòng)員大會(huì)(2023.5)
- 肝臟炎性假瘤的影像學(xué)表現(xiàn)培訓(xùn)課件
- 國(guó)家行政機(jī)關(guān)公文格式課件
- 耐壓絕緣硅橡膠涂料噴涂作業(yè)指導(dǎo)書(shū)
- 小學(xué)《體育與健康》 人教版 三年級(jí) 乒乓球運(yùn)動(dòng) -乒乓球介紹與球性教學(xué) 第一節(jié)課PPT 課件
- 急性心梗的護(hù)理業(yè)務(wù)學(xué)習(xí)課件
- 導(dǎo)向標(biāo)識(shí)系統(tǒng)設(shè)計(jì)(二)課件
- 聚焦:如何推進(jìn)教育治理體系和治理能力現(xiàn)代化
- 化工儀表自動(dòng)化【第四章】自動(dòng)控制儀表
評(píng)論
0/150
提交評(píng)論