




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
基于改進深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識別算法研究摘要
肺癌是一種常見的惡性腫瘤,早期發(fā)現(xiàn)和診斷對治療和預(yù)后的影響非常重要。醫(yī)學(xué)影像學(xué)成為肺癌診斷的重要手段之一。本文利用醫(yī)學(xué)影像肺癌診斷中常用的CT影像數(shù)據(jù),基于改進深度學(xué)習(xí)的算法進行研究。首先,分析常用的卷積神經(jīng)網(wǎng)絡(luò)(CNN)的局限性,提出了改進后的卷積神經(jīng)網(wǎng)絡(luò)(improvedCNN)算法。然后,在處理醫(yī)學(xué)影像數(shù)據(jù)時,針對噪聲和數(shù)據(jù)維度較高的問題,提出了一種基于主成分分析(PCA)和小波變換(Wavelet)的數(shù)據(jù)預(yù)處理方法,以提升實驗結(jié)果的準確度和魯棒性。實驗結(jié)果表明,與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法相比,improvedCNN算法在肺癌識別中的準確性和穩(wěn)定性均有所提升。同時,所提出的數(shù)據(jù)預(yù)處理方法也能夠有效地降低噪聲和提升預(yù)測能力。
關(guān)鍵詞:醫(yī)學(xué)影像、肺癌識別、卷積神經(jīng)網(wǎng)絡(luò)、PCA、Wavelet
Abstract
Lungcancerisacommonmalignanttumor,anditsearlydetectionanddiagnosishaveasignificantimpactonthetreatmentandprognosis.Medicalimaginghasbecomeanimportantmeansforlungcancerdiagnosis.Inthispaper,weproposealungcancerrecognitionalgorithmbasedonimproveddeeplearningusingCTimagescommonlyusedinmedicalimaging.Firstly,weanalyzethelimitationsoftheconventionalconvolutionalneuralnetwork(CNN),andproposeanimprovedCNNalgorithmtoovercometheselimitations.Secondly,toaddresstheissueofhighnoiseanddimensionalityofmedicalimagedata,weproposeadatapreprocessingmethodbasedonprincipalcomponentanalysis(PCA)andwavelettransformtoimprovetheaccuracyandrobustnessoftheexperimentalresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilityinlungcancerrecognitioncomparedtothetraditionalCNNalgorithm.Moreover,theproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancepredictionability.
Keywords:medicalimaging;lungcancerrecognition;convolutionalneuralnetwork;PCA;WaveletMedicalimagingplaysavitalroleintheearlydetectionanddiagnosisoflungcancer.However,theaccuracyandrobustnessoflungcancerrecognitionalgorithmsdependonthequalityandcomplexityofthemedicalimages.Therefore,thereisaneedforadvanceddatapreprocessingtechniquestoimprovetheperformanceoflungcancerrecognitionalgorithms.
Inthisstudy,weproposeanoveldatapreprocessingmethodthatcombinesprincipalcomponentanalysis(PCA)andwavelettransformtoenhancetheaccuracyandstabilityoflungcancerrecognitionalgorithms.PCAisusedtoreducethedimensionalityoftheinputimagesandremoveredundantinformation,whilewavelettransformisusedtodecomposetheinputimagesintomultiplefrequencybandsandextractrelevantfeatures.
Toevaluatetheeffectivenessofourproposedmethod,weemployaconvolutionalneuralnetwork(CNN)algorithmforlungcancerrecognition.WeusebothtraditionalCNNandimprovedCNNalgorithmstocomparetheaccuracyandstabilityoftherecognitionresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilitythanthetraditionalCNNalgorithm.Moreover,ourproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancethepredictionabilityofthelungcancerrecognitionalgorithm.
Inconclusion,ourproposeddatapreprocessingmethodthatcombinesPCAandwavelettransformisaneffectiveapproachtoenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms.ThismethodcanbefurtherappliedtoothermedicalimagingproblemstoimprovetheperformanceofexistingalgorithmsFurthermore,thesuccessofourmethodhighlightstheimportanceofdatapreprocessinginmedicalimageanalysis.Preprocessingtechniquescansignificantlyaffecttheaccuracyandrobustnessofmedicalimagerecognitionalgorithms,asmedicalimagesareoftensubjecttovariationsinresolution,noise,andcontrast.Assuch,combiningmultiplepreprocessingtechniques,suchaswavelettransformandPCA,canhelptoaddresstheseissuesandproducemoreaccuratepredictions.
Movingforward,thereisroomforfurtherinvestigationandrefinementofourproposedmethod.Forinstance,exploringotherdimensionalityreductionalgorithms,suchast-SNEorLLE,mayyieldevenbetterresults.Additionally,applyingdifferentwaveletfunctionsorscalingfactorscouldimprovetheeffectivenessofwavelettransforminreducingnoiseandenhancingfeaturesinmedicalimages.
Overall,ourstudydemonstratesthepotentialofcombiningPCAandwavelettransformformedicalimagerecognition.Byutilizingthesetechniques,ourproposeddatapreprocessingmethodcanenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms,pavingthewayforimproveddiagnosesandtreatmentplansInadditiontothemethodsdiscussedabove,thereareseveralothertechniquesthatcanbeusedtoimprovemedicalimagerecognition.Oneapproachistousedeeplearningalgorithms,whichhaveshownpromisingresultsinavarietyofmedicalimagingapplications.Deeplearningalgorithmsuseartificialneuralnetworkstoautomaticallylearnfeaturesfromthedata,andhavebeenshowntobeeffectiveintaskssuchastumordetectionandsegmentation.
Anotherapproachistoincorporateaprioriknowledgeintotherecognitionprocess.Forexample,inlungcancerrecognition,priorknowledgeabouttheshapeandtextureoflungnodulescanbeusedtoimprovetheaccuracyoftherecognitionalgorithm.Thiscanbeachievedthroughtheuseofshapeandtextureanalysistechniques,suchasfractalanalysisorgray-levelco-occurrencematrixanalysis.
Finally,itisimportanttoconsiderthepracticallimitationsofmedicalimagerecognitionalgorithms.Onemajorlimitationistheavailabilityoflarge,high-qualitydatasetsfortrainingandtesting.Withoutaccesstolargedatasets,itcanbedifficulttodevelopaccurateandrobustrecognitionalgorithms.Additionally,thecomputationalresourcesrequiredtotrainandtestthesealgorithmscanbesubstantial,whichmaylimittheirpracticalapplicationinclinicalsettings.
Despitetheselimitations,advancesinmedicalimagerecognitionhavethepotentialtorevolutionizethefieldofdiagnosisandtreatment.Bycombiningadvancedimagingtechnologieswithsophisticatedanalys
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機輸入輸出2025年考試試題及答案
- 2025年軟考備考的高效秘笈試題及答案
- 生活習(xí)慣養(yǎng)成小班教育計劃要點
- 現(xiàn)代化開發(fā)流程的優(yōu)化策略試題及答案
- 2025年軟考服務(wù)導(dǎo)向架構(gòu)試題及答案
- 倉庫應(yīng)對市場變化的靈活策略計劃
- 云計算平臺的服務(wù)模型解析試題及答案
- 河北省石家莊市八校聯(lián)考2025年七下數(shù)學(xué)期末經(jīng)典模擬試題含解析
- 保密資質(zhì)認定管理辦法
- 2025屆合肥蜀山區(qū)五校聯(lián)考八年級數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析
- 《匹配理論》課件
- 《威尼斯商人》課本劇劇本:一場人性與金錢的較量(6篇)
- 建筑安全管理人員應(yīng)知應(yīng)會
- 醫(yī)療毒麻藥品培訓(xùn)
- GB/T 21477-2024船舶與海上技術(shù)非金屬軟管組件和非金屬補償器的耐火性能試驗方法
- 醫(yī)療器械經(jīng)營監(jiān)督管理辦法培訓(xùn)2024
- 2024年公路水運工程試驗檢測師《道路工程》考試題庫大全(含真題等)-中(多選題)
- 中醫(yī)醫(yī)術(shù)確有專長人員醫(yī)師資格考核申報資料表
- DB41T 2213-2021 水文自動監(jiān)測設(shè)備維護規(guī)程
- 幕墻專業(yè)培訓(xùn)資料
- 電網(wǎng)的電流保護課程設(shè)計
評論
0/150
提交評論