版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第十三章JU次不等式和7L次不等式組
第一節(jié)不等式
點撥:要看一個表達(dá)式是否是不等式,就是
學(xué)習(xí)目標(biāo)
要看式子中是否含有不等號,因此答案是
1.經(jīng)歷從具體問題情景中建立不等式模型(1)(2)(4).
的過程,進(jìn)一步發(fā)展學(xué)生的符號感.例2.列不等式:
2.了解不等式的意義,認(rèn)識到不等式是表示(1)x的3倍與x的工的差是非正數(shù).
同類量之間關(guān)系的重要數(shù)學(xué)模型.2
3.體會現(xiàn)實生活中存在著大量的不等關(guān)系,(2)a的2倍與b的差不小于4.
學(xué)習(xí)不等式的有關(guān)知識是生活和工作的(3)x與y兩數(shù)的平方和不可能小于5.
需要.(4)小紅家有3口人,人均住房面積不足
-5___________________________£
]課前預(yù)習(xí)方案20平方米,則她家的住房面積x平方
米可表示為.
自主學(xué)習(xí)點撥:不等式反映的是代數(shù)式之間的不等關(guān)
1.用等號或不等號填空:系,解決這類問題的重點是抓住關(guān)鍵
詞,弄清不等關(guān)系.
(1)0_____-32;(2)3.3_____—;
10
解:(1)3x--x<0;(2)2a-b24;
(3)a2____0;(4)(3-x)2_____(x-3)2.2
2.某種零件的長度表明為L=50±0.3,則此x
(3)x'y2>5;(4)-<20.
零件長度L的范圍是.3
知識鏈接例3.用A、B兩種原料配置成某種飲料,已
1.不等號的種類:>、<、>、W、手.知這兩種原料的維生素C含量及購買這兩種
2.不等號的讀法;例如:讀作大于.原料的價格如下表:
3.不等號的意義:例如:表明左邊的
A種原料A種原料
量大于右邊的量.
—C
維生素C(單位/千
]課堂學(xué)習(xí)方案500200
克)
知識結(jié)構(gòu)原料價格(元/千
73
1.不等式的定義:用不等號連接而成的式子克)
叫做不等式.現(xiàn)配制成此飲料12千克,至少含有4000單
2.列不等式:依據(jù)題目中的不等關(guān)系列出相位的維生素C,試寫出所需A種原料的質(zhì)量
應(yīng)的不等式的過程叫做列不等式.x(千克)應(yīng)滿足的不等式為;若
3.判斷使不等式成立的值的方法:購買A、B兩種原料D的費用不超過70元,
將數(shù)值代入不等式的左、右兩邊,如果合則x(千克)應(yīng)滿足的另一個不等式為
不等號所表示的不等關(guān)系,則數(shù)值就為所
要求的數(shù)值;反之,不是.點撥:此題為圖表信息的應(yīng)用題,仔細(xì)閱讀
典型例題圖表提供的信息,結(jié)合題中的已知條
例1.在下列表達(dá)式中:(1)-2<0,(2)x-3y件即可得到關(guān)系式.
22
21,(3)5a+l=0,(4)7x+3^y,(5)a+2ab-b解:500x+200(12-x)>4000,
是不等式的(只7x+3(12-x)W70.
填序號).
限時課堂訓(xùn)練P=二一的大小關(guān)系是__________.
3
基本練習(xí)10.某市化工廠現(xiàn)有甲種原料290千克、乙
2種原料212千克,計劃利用這兩種原料
1.下列各式⑴a+3,⑵—,(3)5a—
X生產(chǎn)產(chǎn)品共80件,生產(chǎn)一件A產(chǎn)品需要
4甲種原料5千克、乙種原料1.5千克,
2b=7,⑷m》0,⑸yW3,(6)一<3,屬于
5a生產(chǎn)一件B產(chǎn)品需要甲種原料2.5千克、
不等式的有()乙種原料3.5千克,若該化工廠現(xiàn)有的
A.1個B.2個C.3個D.4個原料能保證生產(chǎn),試寫出滿足生產(chǎn)A產(chǎn)
2.當(dāng)x取2時,下列不等式成立的是()品x件的關(guān)系式.
A.x+2>0B.x+2<0
C.x-2>0D.x-5>0
3.用不等式表示“7與m的3倍的和是正數(shù)”
就是?
4.如圖,天平右盤中的每個祛碼的質(zhì)量都
1g,則物體A的質(zhì)量mg的取值范圍為
拓展思維
比較下面兩列算式結(jié)果的大?。?/p>
52+42______2X5X4,
5.(09.舟山)日常生活中,“老人”是一個模22
(-2)2+(-)2_________2X(-2)X-,
糊概念,有人想用“老人系數(shù)”來表示一-33
個人的老年程度,其中一個人的“老人系32+322X3X3,….
數(shù)”計算方法如下表:通過觀察,歸納比較
人的年齡20092+201022X2009X2010,
xW6060<x<80x280
(X)歲寫出能反映這種規(guī)律的一般結(jié)論,并證
該人的老x-60明你結(jié)論的正確性.
01
人系數(shù)20
按這樣的規(guī)定,一個年齡為70歲的人,
他的“老人系數(shù)”為.
6.請你寫出一個整數(shù)x,使不等式
-x-7>4成立,這個數(shù)是
2
7.用“V”號表示-(-3);-一三,—(—2)3的
4
大小關(guān)系:.
8.若a+b<0,且|a|>Ib|,a,-a,b,-b
大小關(guān)系是.
9.若實數(shù)a>l,則實數(shù)M=a,N="2,
2
第二節(jié)不等式的基本性質(zhì)
(3)若a<b,則-l+5aT+5b.
學(xué)習(xí)目標(biāo)
(4)若a)b,則----------,
1.經(jīng)歷不等式基本性質(zhì)的探究過程,體會不33
等式變形和等式變形的區(qū)別和聯(lián)系.(5)若a>b,則-a<?-be2.
2.掌握不等式的基本性質(zhì).點撥:解此類題的關(guān)鍵是先觀察不等號的
3.通過對不等式性質(zhì)的探索,培養(yǎng)大家的鉆左、右兩邊是由原不等式進(jìn)行了怎樣
研精神,同時加強(qiáng)同學(xué)間的合作與交流.的變形得到的,然后依據(jù)不等式的三
條基本性質(zhì)決定不等號是否要變向.
課前預(yù)習(xí)方案
I注意c可能為0的情形.
自主學(xué)習(xí)答案:⑵〉
1.設(shè)aVb,請用或“V”填空.(4)W(5)W
(l)a+5___b+5,(2)a-3______b-3,例2.依據(jù)不等式的基本性質(zhì),把下列不等式
(3)4a_______4b,(4)-5a_______-5b.化為x>a或x<a的形式:
2.將下列不等式化為x>a或x<a的形式:(D-3x+lW2x,(2)2(y+3)210.
(l)x+2>3,(2)5y-4<2.點撥:在不等式變形的過程中,要嚴(yán)格按照
知識鏈接不等式的基本性質(zhì)進(jìn)行變形,應(yīng)先觀
等式的基本性質(zhì):察不等式的特點,再根據(jù)其特點選用
1.等式兩邊同時乘同一個數(shù),等式仍成立.相應(yīng)的不等式的基本性質(zhì)進(jìn)行變形.
2.等式兩邊同時除以同一個數(shù)(除數(shù)不能為解:⑴-3x+lW2x
0),等式仍然成立.-3x+lTW2x-l(不等式基本性質(zhì)1)
?C
-3xW2xT
課堂學(xué)習(xí)方案
I-3x-2xW2xT-2x(不等式基本性質(zhì)1)
知識結(jié)構(gòu)-5xWT
1.不等式的三條基本性質(zhì):-5x-1
L(不等式基本性質(zhì)3)
基本性質(zhì)1:如果a>b,那么a+c>b+-5-5
c,a—c>b—c.
基本性質(zhì)2:如果a>b,并且c>0,那么
ac>bc.(2)2(y+3)210
基本性質(zhì)3:如果a>b,并且c<0,那么2(y+3)+2210+2(不等式基本性質(zhì)2)
ac<bc.y+325
2.對基本性質(zhì)的理解:y+3-325-3(不等式基本性質(zhì)1)
(1)對于性質(zhì)1,須注意的是“c既可以代y22
表數(shù),也可以代表整式”.例3.小明與小剛討論一個關(guān)于不等式的問
(2)對于性質(zhì)2、3,須注意的是“c的正題,小明說:當(dāng)每個梨的大小?樣時,5個
負(fù)性”,如果c為正數(shù),不等號的方向不梨的質(zhì)量大于4個梨的質(zhì)量,設(shè)每個梨的質(zhì)
改變;反之,變號.如果c為。時,不等量為x,則有5x>4x,小剛說:這肯定正確.
式兩邊都乘。時.,變?yōu)榈仁?;若除?,小明又說:那如果a為有理數(shù),則5a一定
則無意義.大于4a,這對嗎?小剛說:這與5x>4x不是
典型例題一回事嗎?自然對.請問:小剛說的對嗎?
例L用不等號填空:試說明理由.
⑴若a<b,則a-3b-3,點撥:要判斷5a與4a的大小關(guān)系,與前面
⑵若a>b,貝ij2aa+b,5x>4x是不同的,因為題中很明確x>0,而
3
a的取值情況不能確定,因此必須分情況討C.若a<l,貝Ij/Vl
論.D.若a>0,貝ija2>a
解:小剛回答不正確,5a不一定大于4a,
9已知x/4,化簡:|23一3卜|6-2聞
因為a的取值不確定,應(yīng)分三種情況討論.
當(dāng)a>0時'由不等式基本性質(zhì)2,得5a>
4a;當(dāng)a<0時,由不等式基本性質(zhì)3,得
5a<4a;當(dāng)a=0時,5a=4a=0.
限時課堂訓(xùn)練
基本練習(xí)
1.若m<n,比較下列各式的大小:
(1)m-3n-3;
(2)_5m_________5n;
拓展思維
(4)3-m2-n;(1)2>1>0,4>3>0,2X4____3X1;
(5)0m-n;5757
(2)8>—>0,3>—>0,8X3____—x一;
小3-2m3—2〃43—43
(6)------------.
44你從中發(fā)現(xiàn)的數(shù)學(xué)規(guī)律是什么?請試舉
2.x<y得到ax>ay的條件應(yīng)是幾例驗證一下.
3?滿足-2x>-12的非負(fù)整數(shù)有
4.如果m<n<0,那么下列結(jié)論中錯誤()
A.m—9<n—9B.—m>—n
八11、m.
C.—>—D.—>1
nmn
5.若a-bVO,則下列各式中一定正確()
A.a>bB.ab>0
C.—<0D.—a>—b
h
6.已知有理數(shù)a、b、c在數(shù)軸上的位置如
圖所示,則下列式子正確的是()
-c~b-0
A.cb>abB.ac>ab
C.cb<abD.c+b>a+b
7.2a與3a的大小關(guān)系()
A.2a<3aB.2a>3a
C.2a=3aD.不能確定
8.a為有理數(shù),下列給出的結(jié)論正確的是
A.a2>0()
B.若a<0,貝ija2>0
4
冀教版八年級上新課標(biāo)學(xué)案
第三節(jié)一元一次不等式
第一課時一元次不等式的解法
式的解集.
學(xué)習(xí)目標(biāo)
不等式?般有無限多個解.
1.使學(xué)生正確理解不等式的解,不等式的解(3)解不等式
集,解不等式的概念,掌握在數(shù)軸上表示求不等式的解集的過程,叫做解不等式.
不等式的解的集合的方法.2.解集在數(shù)軸上的表示方法:
2.會解簡單的一元一次不等式,并能和解一理解“兩定”:一是定邊界點,二是定方
元一次方程的過程進(jìn)行類比,發(fā)現(xiàn)異同.向;
3.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初口訣記憶:大于向右,小于向左,有等號
步掌握對比的思想方法.的畫實心,無等號的畫圓圈.
3.一元一次不等式的概念:
課前預(yù)習(xí)方案
I只含有一個未知數(shù),未知數(shù)的最高次數(shù)是
自主學(xué)習(xí)一次,這樣的不等式叫一元一次不等式.
1.下列說法正確的是()典型例題
A.不等式x<5的整數(shù)解有無數(shù)多個例1.下列不等式是一元一次不等式嗎?
B.不等式x<5的正整數(shù)解有無數(shù)多個(1)2x-2.5^15;(2)5x+3y>240;
C.不等式-2x>8的解集為x>-4
(3)x<-4;(4)->1.(5)X2-2X-1^0;
D.-40是不等式2x<8的一個解.x
2.下列不等式是一元一次不等式的是()(6)2(1-y)+y>4y+2.
x3思路分析:要判斷一個不等式是否是一元一
A.x(2-x)B.—I——>6
2x次不等式,不能只看形式,要看化簡以后的
C.2x-5y+2<0D.3(1-y)>4y+2結(jié)果,而且含有未知數(shù)的式子都是整式.答
3.解下列不等式:案是(1)(3)(6).
(l)x-2<5(2)2x》x+6.例2.解不等式3-x<2x+6,并把它的解集
知識鏈接表示在數(shù)軸上.
一元一次方程的解法:去分母、去括號、移點撥:類比解一元一次方程的過程,運用不
項、合并同類項、系數(shù)化為L等式的基本性質(zhì)解次不等式.
]課堂學(xué)習(xí)方案解:兩邊都加上x,得
3—x+x<2x+6+x
知識結(jié)構(gòu)合并同類項,得3<3x+6
1.明確幾個基本概念:兩邊都加上一6,得3—6<3x+6—6
(1)不等式的解:合并同類項,得一3<3x
能使不等式成立的未知數(shù)的值,叫做不等兩邊都除以3,得一IVx
式的解.即x>—1.
判斷某個未知數(shù)是不是不等式的解,可以這個不等式的解集在數(shù)軸上表示如下:
直接將其代入到不等式中,然后看不等式
是否成立,如果成立則是不等式的解;反
-3-2-101234
之,則不是不等式的解.
(2)不等式的解集:例3.解不等式(k+2)x>5.
一個含有未知數(shù)的不等式的所有解,組成點撥:當(dāng)未知數(shù)的系數(shù)不確定正、負(fù)時,
這個不等式的解的集合.簡稱為這個不等需對其進(jìn)行討論.
5
冀教版八年級上新課標(biāo)學(xué)案
(3)7x-2W9x+3
解:若k+2>0,則x>-----,
k+2
若k+2<0,則》<-----,
k+2
若k+2=0,則不論x為何值時,
(k+2)x>5都不成立.
限時課堂訓(xùn)練
(4)5x-2>1lx+3
基本練習(xí)
1.不等式x+426的解集是()
A.x=2B.x》2C.xW2D.無解
2.下列四個結(jié)論:(1)4是不等式x+3>6
的解;(2)3是不等式x+2>5的解;(3)
不等式x+l<2的解有無數(shù)多個;(4)不
等式x+l<4的的解集是xV2:(5)不等
式x+2>l的解集是x>-l,其中正確的個
數(shù)是()拓展思維
A.1個B.2個C.3個D.4個
已知不等式>7和不等式
3.下列不等式中不是一元一次不等式的是3
A.-x+1)5B.2x+3y<0
--x2m+"<6都是關(guān)于x的一元一次不
35
C.3.x4—x<一2D.4x<5()
4等式,求代數(shù)式3m+2n的值.
4.已知a〈0,則關(guān)于x的不等式ax<5的解為
_;5x<a的解為
5.寫出一個解為x>8的一元一次不等式
6.能使不等式3x+52x-2成立的負(fù)整數(shù)有
7.當(dāng)x時,代數(shù)式x+3的值是正
數(shù),當(dāng)x時,代數(shù)式4-x的值是
負(fù)數(shù).
8.已知關(guān)于x的不等式x-a>l的解集如下
圖所示,則a的值是.
,一
-3-2-1012
9.解下列不等式,并把解表示在數(shù)軸上:
(l)l-x>2(2)5x-4>4-3x
6
冀教版八年級上新課標(biāo)學(xué)案
第二課時次不等式的解法
系數(shù)的正、負(fù)性,決定是否改變不等
學(xué)習(xí)目標(biāo)
號的方向.
1.通過具體實例,歸納解一元一次不等式的解:去分母,得2x230+5(x-2),
基本步驟.去括號,得2xe30+5x—10,
2.能利用一元一次不等式的知識解決數(shù)學(xué)移項、合并同類項,得3xW-20,
中的具體問題.20
兩邊都除以3,得xW——.
3.進(jìn)一步體會類比的數(shù)學(xué)思想,并培養(yǎng)學(xué)生3
的合情推理意識,主動探究的習(xí)慣.不等式的解集在數(shù)軸上表示如下:
?C
'課前預(yù)習(xí)方案
-10-8-6-4-2024
自主學(xué)習(xí)例2.已知關(guān)于x、y的方程組
1.解不等式(l)3—xV2(x+6),
《的解滿足0<x+y<l,求
x+3y=2(2)
2.2x-4W0的非負(fù)整數(shù)為.k的取值范圍.
3.7a與3差不大于1,則a的取值范圍是….點撥:此類問題的解法:注意不等式與方程
知識鏈接(組)的綜合應(yīng)用.首先是用含待定系數(shù)的
非負(fù)整數(shù):大于或等于0的正整數(shù)如0,1,代數(shù)式表示出方程(組)的解x、y,隨后根
2,3,據(jù)題目中的條件列出一元一次不等式,從而
非正整數(shù):小于或等于0的負(fù)整數(shù)如0,T,求出方程(組)中未知的字母系數(shù)的取值范
-2,-3,圍.
方程組的常用解法:代入消元法、加減消元解:(1)+(2)得:4x+4y=k+3,
法.女+3
即nx+y=---->
4
V0<x+y<l,
課堂學(xué)習(xí)方案
.八k+3
:.0<----<1,
知識結(jié)構(gòu)4
1.解一元一次不等式須注意的:
0<Zr+3<4,一“,、
理論依據(jù):不等式的基本性質(zhì);可得m=3.
-3<k<1.
數(shù)學(xué)思想:類比思想,數(shù)形結(jié)合思想
基本步驟:去分母、去括號、移項、合并]限時課堂訓(xùn)練
同類項、系數(shù)化為1.
2.一元一次不等式的純數(shù)學(xué)應(yīng)用問題.基本練習(xí)
典型例題1.解下列一元一次不等式:
例1.解下列不等式,并把它們的解集分別在x—14x—5
⑴----<-------
數(shù)軸上表示出來:土》3+土」23
52
點撥:利用解一元一次不等式的基本步驟:
去分母,去括號,移項,合并同類項,
系數(shù)化為1.注意“去分母、去括號”
時不要漏乘,分子是多項式時須加括
號,“系數(shù)化為1”時須注意未知數(shù)的
7
冀教版八年級上新課標(biāo)學(xué)案
拓展思維
”1,1111
己>知:-----1,-----------
1x222x323
2x-31_111_11
(3)—2W<1----
33^434'47545
1_11
(n-1)/?n-1〃,
根據(jù)卜.面式子的規(guī)律,求不等式
XXX
--1--1---F…+>〃-1
2612
的解集.
2.關(guān)于x的方程3x+k=4的解是正數(shù),
則k.
3.三角形的三邊長分別是6、9、X,則x的
取值范圍是——
4.不等式一3W5-2xV3的正整數(shù)解集是
5.某商品原價5元,如果跌價x%后,仍
不低于4元,那么x的取值范圍為
6.如果不等式3x-mW0的正整數(shù)解為1,2,
3,求m的取值范圍.
7.已知關(guān)于X,y的方程組]葭?3::15
的解都是正數(shù),求a的取值范圍.
8
冀教版八年級上新課標(biāo)學(xué)案
第三課時一元一次不等式的應(yīng)用
知每只筆三元,每個筆記本2.2元,她買了2
學(xué)習(xí)目標(biāo)
個筆記本.請你幫她算一算,她還可能買幾
1.經(jīng)歷從具體問題中抽象出不等式模型的枝筆?
過程.分析:①隱含不等關(guān)系:用21元錢買
2.會將具體問題轉(zhuǎn)化為數(shù)學(xué)問題并求解.筆和筆記本可抽象為不等關(guān)系W21
3.熟練掌握?元一次不等式應(yīng)用題的解題②若設(shè)可買n枝筆,則本題中n只能
步驟.取正整數(shù).
]課前預(yù)習(xí)方案解:設(shè)她還可買n枝筆,由題意,得
3n+2.2X2W21
自主學(xué)習(xí)解這個不等式,得
1.利用不等式解決問題的關(guān)鍵是尋找—關(guān)
系,列出,并注意根據(jù)問題的實際
意義對解集進(jìn)行,最后確定問題的為正整數(shù)
解.小穎還可能買1枝、2枝、3枝、4
2.一次環(huán)保知識競賽共有25道題,規(guī)定答枝或5枝筆.
對一道題得4分,答錯或不答一道題扣1總結(jié):①通過類比數(shù)學(xué)思想,類比一元
分,在這次競賽中,小明被評為優(yōu)秀(85一次方程解應(yīng)用題的方法,能夠運用一元一
分或85分以上),小明可能答對了一道次不等式解決實際問題.②一元?次不等式
題,至少答對了道題.應(yīng)用題的解題步驟:審題、找不等關(guān)系、設(shè)
知識鏈接未知數(shù)、列不等式、解不等式、對實際問題
一元一次方程應(yīng)用題的解題步驟:審進(jìn)行檢驗、下結(jié)論.
題、找等量關(guān)系、設(shè)未知數(shù)、列方程、解方例2.某座樓電梯的最大承載量為
程.1000kg,在電梯里裝上700kg的裝修材料
]課堂學(xué)習(xí)方案后,5名裝修工人走進(jìn)了電梯,這時,電梯的
警示鈴響了,這說明一超過了電梯的最大承
知識結(jié)構(gòu)載量.這5名工人的平均體重超過了多少千
同類量之間的不等關(guān)系,可以用數(shù)學(xué)中克?
的不等式來表示,要把實際問題中的不等關(guān)分析:關(guān)鍵語句:電梯的警示鈴響了,
系抽象為不等式,需把握以下兩點:這說明已超過了電梯的最大承載量,點明本
①明確問題中常用的表示不等關(guān)系詞語的題的不等關(guān)系.
意義.如“大于”“超過”“還多”“高于”等解:設(shè)這5名工人的平均體重為x千克,由
抽象為“>”,“小于”“不足”“還少”“低題意,得
于”等抽象為“<”,而“不大于”“最多”5x+700>1000
對應(yīng)“W”,“不小于”“至少”對應(yīng)解這個不等式,得
②隱含不等關(guān)系在具體情境中,如買東西,x>60
花去的錢應(yīng)不超過原有的錢;汽車運貨物質(zhì)答:這5名工人的平均體重超過了60千克.
量應(yīng)不超過汽車規(guī)定的載重量;“用”和“運”
的區(qū)分等等.
典型例題:
例1.小穎準(zhǔn)備用21元錢買筆和本,已
9
冀教版八年級上新課標(biāo)學(xué)案
限時課堂訓(xùn)練
基本練習(xí)
1.某商品進(jìn)價是1000元,售價為1500元.為
促銷,商店決定降價出售,但保證利潤率
不低于5%,則商店最多降元出
售商品.
2.?個兩位數(shù),十位數(shù)字與個位數(shù)字的和為
6,且這個兩位數(shù)不大于42,則這樣的兩
位數(shù)有個.
3.采石廠工人爆破時,為了確保安全,點燃拓展思維
炸藥導(dǎo)火線后要在炸藥爆破前轉(zhuǎn)移到400(2003年甘肅省)某工廠生產(chǎn)某種產(chǎn)品,
米以外的安全區(qū)域.導(dǎo)火線燃燒速度是1每件產(chǎn)品的出廠價為1萬元,其原材料成本
厘米/秒,人離開的速度是5米/秒,至少需價(含設(shè)備損耗等)為0.55萬元,同時在生產(chǎn)
要導(dǎo)火線的長度是()過程中平均每生產(chǎn)一件產(chǎn)品有1噸的廢渣產(chǎn)
A.70厘米B.75厘米生.為達(dá)到國家環(huán)保要求,需要對廢渣進(jìn)行
C.79厘米D.80厘米脫硫、脫氮等處理.現(xiàn)有兩種方案可供選擇.
4.某商店在一次促銷活動中規(guī)定:消費者消方案一:由工廠對廢渣直接進(jìn)行處理,
費滿200元或200元以上就可享受打折優(yōu)每處理1噸廢渣所用的原料費為0.05萬元,
惠,一名同學(xué)為班級買獎品,準(zhǔn)備買6本影并且每月設(shè)備維護(hù)及損耗費為20萬元.
集和若干支鋼筆.已知影集每本15元,鋼方案二:工廠將廢渣集中到廢渣處理廠
筆每支8元,問他至少買多少支鋼筆才能統(tǒng)處理.每處理1噸廢渣需付0.1萬元的
打折?處理費.
⑴設(shè)工廠每月生產(chǎn)x件產(chǎn)品,每月利潤為y
萬元,分別求出用方案一和方案二處理廢
渣時,用含x的代數(shù)式表示y(利潤=總收
入-總支出);
⑵如果你作為工廠負(fù)責(zé)人,那么如何根據(jù)月
生產(chǎn)量選擇處理方案,既可達(dá)到環(huán)保要求
又最合算.
5.某城市平均每天產(chǎn)生垃圾500噸,由甲、
乙兩個垃圾處理廠處理.已知甲廠每小時
可處理垃圾35噸,需費用350元;乙廠
每小時可處理垃圾15噸,需費用180元.
⑴甲、乙兩廠同時處理該城市的垃圾,每天
需幾小時完成?
⑵如是規(guī)定該城市每天用于處理垃圾的費
用不超過5400元,甲廠每天處理垃圾至少
需要多少小時?
10
冀教版八年級上新課標(biāo)學(xué)案
第四節(jié)元一次不等式組
第一課時一元次不等式組解法
②注意實心與空心的區(qū)別.
學(xué)習(xí)目標(biāo)
典型例題:
1.了解一元一次不等式組及解集的概念.例1.下列說法正確的是()
2.會解?元次不等式組并能把解集在數(shù)
A.不等式組卜>?的解集是5〈X<3
軸上表示.(X>5
3.掌握類比方法,在學(xué)習(xí)的過程中體會數(shù)形
B.|x>或的解集是一3<x<-2
結(jié)合的思想,提升直覺思維能力.|x<-3
]課前預(yù)習(xí)方案x
C.f2的解集是x=2
(xw2
自主學(xué)習(xí)
D.(x<V的解集是xW3
1.下列不等式組中,是一元一次不等式組的(x>-3
是()思路分析:關(guān)鍵在數(shù)軸上會找公共部分.
答案是C.
A.卜>2B.2+[>g
(X<-3(y-2<0xT〉2(x+l)
例2.不等式組1,3的解集在數(shù)
—x-1w3-—x
122
軸上表示正確的是().
A.n-----------匚二
2.某校冬季燒煤取暖時間為4個月,設(shè)該校-4-3-2-10123
計劃每月燒煤x噸,如果每月比計劃多燒
B.____!I?
5噸煤,那么取暖用煤總量將超過100噸,
-4-3-2-10123
則可列不等式為;如果每月比
計劃少燒5噸煤,那么取暖用煤總量將不
足68噸,則可列不等式為;該C.
校計劃每月燒煤噸.(列不等式表
示)D..4-3-2-10123
知識鏈接思路分析:考查學(xué)生用數(shù)軸表示不等式
1.數(shù)軸2.如何解一元一次不等式的解集及不等式組的解集的求法.
]課堂學(xué)習(xí)方案分析:分別求出每個不等式的解集.
解不等式x-1>2(x+1),得x<-3;
知暝結(jié)構(gòu)
解不等式(x-1w3-|x,得xW2.
1.不等式組定義:關(guān)于同一個未知數(shù)的幾
個一元一次不等式合在一起就組成一元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獨立董事2025年度履職評價與激勵措施合同3篇
- 二零二五年度禾青幼兒園教玩具采購與幼兒園設(shè)施維護(hù)合同3篇
- 二零二五搬家公司合同模板:搬家保險責(zé)任與賠償條款2篇
- 二零二五版物流行業(yè)預(yù)付款擔(dān)保合同2篇
- 二零二五版搬家服務(wù)與家政服務(wù)融合合同樣本2篇
- 二零二五年度蔬菜電子商務(wù)合同:線上銷售平臺與賣家之間的規(guī)則2篇
- 二零二五版汽車零部件購銷合同標(biāo)準(zhǔn)及售后服務(wù)模板3篇
- 二零二五年度國際教育機(jī)構(gòu)合作辦學(xué)合同3篇
- 二零二五年度高壓變壓器安裝及安全防護(hù)技術(shù)合同3篇
- 二零二五版社保繳納與工傷保險待遇保障合同3篇
- ICU常見藥物課件
- CNAS實驗室評審不符合項整改報告
- 農(nóng)民工考勤表(模板)
- 承臺混凝土施工技術(shù)交底
- 臥床患者更換床單-軸線翻身
- 計量基礎(chǔ)知識培訓(xùn)教材201309
- 中考英語 短文填詞、選詞填空練習(xí)
- 一汽集團(tuán)及各合資公司組織架構(gòu)
- 阿特拉斯基本擰緊技術(shù)ppt課件
- 初一至初三數(shù)學(xué)全部知識點
- 新課程理念下的班主任工作藝術(shù)
評論
0/150
提交評論