2023屆山東省德州市武城二中學中考數學模擬試題含解析_第1頁
2023屆山東省德州市武城二中學中考數學模擬試題含解析_第2頁
2023屆山東省德州市武城二中學中考數學模擬試題含解析_第3頁
2023屆山東省德州市武城二中學中考數學模擬試題含解析_第4頁
2023屆山東省德州市武城二中學中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列命題是真命題的是()A.過一點有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形2.下列圖案中,是軸對稱圖形的是()A. B. C. D.3.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.44.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結論一定正確的是()A. B.C. D.5.如圖,下列各數中,數軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根6.姜老師給出一個函數表達式,甲、乙、丙三位同學分別正確指出了這個函數的一個性質.甲:函數圖像經過第一象限;乙:函數圖像經過第三象限;丙:在每一個象限內,y值隨x值的增大而減?。鶕麄兊拿枋?,姜老師給出的這個函數表達式可能是()A. B. C. D.7.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.88.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④9.二次函數y=ax2+bx+c(a≠0)的圖象如圖,a,b,c的取值范圍()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0D.a>0,b<0,c<010.已知點A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數軸上表示正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知圓錐的底面半徑為,母線長為,則它的側面展開圖的面積等于__________.12.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.13.點A到⊙O的最小距離為1,最大距離為3,則⊙O的半徑長為_____.14.如圖,AB、CD相交于點O,AD=CB,請你補充一個條件,使得△AOD≌△COB,你補充的條件是_____.15.關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數根,則實數k的取值范圍是_______.16.寫出一個大于3且小于4的無理數:___________.三、解答題(共8題,共72分)17.(8分)一定數量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學家把1,3,6,10,15,21,…,稱為“三角形數”;把1,4,9,16,25,…,稱為“正方形數”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數136101521a…正方形數1491625b49…五邊形數151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數”是________;若第n個“三角形數”是x,則用含x、n的代數式表示第n個“五邊形數”是___________.18.(8分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.19.(8分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.(1)求雙曲線的解析式;(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.20.(8分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補全表格時相關數值保留一位小數)(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象.(3)結合畫出的函數圖象,解決問題:PM+PB的長度最小值約為______cm.21.(8分)如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2)(1)求拋物線的表達式;(2)拋物線的對稱軸與x軸交于點M,點D與點C關于點M對稱,試問在該拋物線的對稱軸上是否存在點P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.22.(10分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.求袋子中白球的個數;(請通過列式或列方程解答)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)23.(12分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大?。唬á颍┤簟螪=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.24.已知拋物線,與軸交于兩點,與軸交于點,且拋物線的對稱軸為直線.(1)拋物線的表達式;(2)若拋物線與拋物線關于直線對稱,拋物線與軸交于點兩點(點在點左側),要使,求所有滿足條件的拋物線的表達式.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據真假命題的定義及有關性質逐項判斷即可.【詳解】A、真命題為:過直線外一點有且只有一條直線與已知直線平行,故本選項錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項正確.故選D.【點睛】本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質是解答本題的關鍵,當命題的條件成立時,結論也一定成立的命題叫做真命題;當命題的條件成立時,不能保證命題的結論總是成立的命題叫做假命題.熟練掌握所學性質是解答本題的關鍵.2、B【解析】

根據軸對稱圖形的定義,逐一進行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點睛】本題考查的是軸對稱圖形的定義.3、B【解析】

由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據“相似三角形對應邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質.靈活運用相似的性質可得出解答.4、A【解析】

根據平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.5、C【解析】

解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,

故根據數軸可知,

故選C6、B【解析】y=3x的圖象經過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.7、C【解析】

∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.8、D【解析】

①根據作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質來求∠ADC的度數;③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規(guī)作角平分線、角平分線的性質定理、三角形的外角以及等腰三角形的性質,熟練掌握有關知識點是解答的關鍵.9、D【解析】試題分析:根據二次函數的圖象依次分析各項即可。由拋物線開口向上,可得,再由對稱軸是,可得,由圖象與y軸的交點再x軸下方,可得,故選D.考點:本題考查的是二次函數的性質點評:解答本題的關鍵是熟練掌握二次函數的性質:的正負決定拋物線開口方向,對稱軸是,C的正負決定與Y軸的交點位置。10、B【解析】

先分別求出每一個不等式的解集,再根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:根據題意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式組的解集為x>1,故選:B.【點睛】本題主要考查解一元一次不等式組,關鍵要掌握解一元一次不等式的方法,牢記確定不等式組解集方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】解:它的側面展開圖的面積=?1π?4×6=14π(cm1).故答案為14πcm1.點睛:本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、﹣1【解析】

先由圖形確定:當O、G、D共線時,DG最??;根據正方形的性質證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質與全等三角形的判定與性質,解題的關鍵是熟練的掌握正方形的性質與全等三角形的判定與性質.13、1或2【解析】

分類討論:點在圓內,點在圓外,根據線段的和差,可得直徑,根據圓的性質,可得答案.【詳解】點在圓內,圓的直徑為1+3=4,圓的半徑為2;點在圓外,圓的直徑為3?1=2,圓的半徑為1,故答案為1或2.【點睛】本題考查點與圓的位置關系,關鍵是分類討論:點在圓內,點在圓外.14、∠A=∠C或∠ADC=∠ABC【解析】

本題證明兩三角形全等的三個條件中已經具備一邊和一角,所以只要再添加一組對應角或邊相等即可.【詳解】添加條件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根據AAS判定△AOD≌△COB,添加∠ADC=∠ABC根據AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【點睛】本題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據已知結合圖形及判定方法選擇條件是正確解題的關鍵.15、k<2且k≠1【解析】試題解析:∵關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考點:1.根的判別式;2.一元二次方程的定義.16、如等,答案不唯一.【解析】

本題考查無理數的概念.無限不循環(huán)小數叫做無理數.介于和之間的無理數有無窮多個,因為,故而9和16都是完全平方數,都是無理數.三、解答題(共8題,共72分)17、123n2n2+x-n【解析】分析:(1)、首先根據題意得出前6個“三角形數”分別是多少,從而得出a的值;前5個“正方形數”分別是多少,從而得出b的值;前4個“正方形數”分別是多少,從而得出c的值;(2)、根據前面得出的一般性得出答案.詳解:(1)∵前6個“三角形數”分別是:1=、3=、6=、10=、15=、21=,

∴第n個“三角形數”是,∴a=7×82=17×82=1.

∵前5個“正方形數”分別是:1=12,4=22,9=32,16=42,25=52,

∴第n個“正方形數”是n2,∴b=62=2.

∵前4個“正方形數”分別是:1=,5=,12=,22=,

∴第n個“五邊形數”是n(3n?1)2n(3n?1)2,∴c==3.

(2)第n個“正方形數”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,

∴第n個“五邊形數”是n2+x-n.點睛:此題主要考查了圖形的變化類問題,要熟練掌握,解答此類問題的關鍵是首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.18、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數法,列方程求二次函數解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數的解析式(1)已知二次函數過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數解析式.(2)已知二次函數與x軸的兩個交點(,利用雙根式,y=()求二次函數解析式,而且此時對稱軸方程過交點的中點,.2.處理直角坐標系下,二次函數與幾何圖形問題:第一步要寫出每個點的坐標(不能寫出來的,可以用字母表示),寫已知點坐標的過程中,經常要做坐標軸的垂線,第二步,利用特殊圖形的性質和函數的性質,往往是解決問題的鑰匙.19、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據等腰直角三角形的性質和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯(lián)立一次函數和反比例函數解析式得方程組,解方程組可得點C的坐標,根據圖象可得結論.【詳解】(1)∵點A在直線y1=1x﹣1上,∴設A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時x的取值范圍是x<﹣1或0<x<1.【點睛】本題考查了反比例函數和一次函數的綜合;熟練掌握通過求點的坐標進一步求函數解析式的方法;通過觀察圖象,從交點看起,函數圖象在上方的函數值大.20、(1)2.1;(2)見解析;(3)x=2時,函數有最小值y=4.2【解析】

(1)通過作輔助線,應用三角函數可求得HM+HN的值即為x=2時,y的值;(2)可在網格圖中直接畫出函數圖象;(3)由函數圖象可知函數的最小值.【詳解】(1)當點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據函數圖象可知,當x=2時,函數有最小值y=4.2.故答案為:4.2.【點睛】本題考查了二次函數的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.21、(1)y=﹣x2+x+2;(2)滿足條件的點P的坐標為(,)或(,﹣)或(,5)或(,﹣5).【解析】

(1)利用待定系數法求拋物線的表達式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個點的坐標.【詳解】(1)∵拋物線與x軸交于點A(﹣1,0),B(4,0),∴設拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對稱軸為直線x=,∴M(,0),∵點D與點C關于點M對稱,且C(0,2),∴D(3,﹣2),∵MA=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設點P(,m),∴MP=|m|,∵M(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當△BMP∽ADB時,∴,∴,∴m=±,∴P(,)或(,﹣),②當△BMP∽△BDA時,,∴,∴m=±5,∴P(,5)或(,﹣5),即:滿足條件的點P的坐標為P(,)或(,﹣)或(,5)或(,﹣5).【點睛】本題考查了二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.22、(1)袋子中白球有2個;(2)見解析,.【解析】

(1)首先設袋子中白球有x個,利用概率公式求即可得方程:,解此方程即可求得答案;

(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.【詳解】解:(1)設袋子中白球有x個,根據題意得:,解得:x=2,經檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結果,兩次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論