定積分(與應(yīng)用)習(xí)題及答案_第1頁
定積分(與應(yīng)用)習(xí)題及答案_第2頁
定積分(與應(yīng)用)習(xí)題及答案_第3頁
定積分(與應(yīng)用)習(xí)題及答案_第4頁
定積分(與應(yīng)用)習(xí)題及答案_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——定積分(與應(yīng)用)習(xí)題及答案第五章定積分

(A層次)

?2031.?sinxcosxdx;2.?x0a2a?xdx;3.?223dxx211?x2;

4.?7.?1?1xdx5?4xdx;5.?4dxx?11;6.?341dx1?x?1;

e21?dx;8.?2;9.?1?cos2xdx;

?2x?2x?20x1?lnx032xsinxdx;10.?xsinxdx;11.?2?4cosxdx;12.?4

?5x?2x2?1???2??4454lnx1xdx13.??;14.;15.dxxarctgxdx;?2?10sinxx4?3?016.?2e2xcosxdx;17.??3?2?xsinx?dx;18.?sin?lnx?dx;01?e?019.?2?cosx?cosxdx;20.?44?sinxxsinxdx;dx;21.?01?cos2x1?sinx22.?1202??1?x1?xxlndx;23.?dx;24.?2lnsinxdx;40??1?x1?x?25.?(B層次)

??0?dxdx???0?。

1?x21?x????1.求由?edt??costdt?0所決定的隱函數(shù)y對x的導(dǎo)數(shù)

00ytxdy。dx2.當(dāng)x為何值時,函數(shù)I?x???te?tdt有極值?

2x03.

dcosxcos?t2dt。?dxsinx???x?1,x?12?4.設(shè)f?x???12,求?f?x?dx。

0x,x?1??21

5.lim2??arctgtdt?0xx???x?12。

?1x?sinx,0?x??6.設(shè)f?x???2,求??x???f?t?dt。

0?其它?0,?1,當(dāng)x?0時??1?x7.設(shè)f?x????1,當(dāng)x?0時??1?ex,求?f?x?1?dx。

028.lim1n??n2?n?n2n???n2。

kn2kn?9.求lim?n??k?1e。

1n?ne10.設(shè)f?x?是連續(xù)函數(shù),且f?x??x?2?f?t?dt,求f?x?。

011.若?2ln2xdte?1?12t??61,求x。

12.證明:2e???212e?xdx?2。

2???x?a?2?2x13.已知lim??4xedx,求常數(shù)a。??ax???x?a??2??1?x,14.設(shè)f?x????x??e,xx?0x?0,求?f?x?2?dx。

1315.設(shè)f?x?有一個原函數(shù)為1?sinx,求?2xf??2x?dx。

2?016.設(shè)f?x??ax?b?lnx,在?1,3?上f?x??0,求出常數(shù)a,b使?f?x?dx最

13小。

17.已知f?x??e?x2,求?f??x?f???x?dx。

02100118.設(shè)f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。19.?

?0?f?cosx?cosx?f??cosx?sinx?dx。

22

20.設(shè)x?0時,F(xiàn)?x???x2?t2f???t?dt的導(dǎo)數(shù)與x2是等價無窮小,試求

0x??f???0?。(C層次)

1.設(shè)f?x?是任意的二次多項式,g?x?是某個二次多項式,已知

?10f?x?dx?b?1??1?,求????f0?4f?f1g?x?dx。?????a6??2??2.設(shè)函數(shù)f?x?在閉區(qū)間?a,b?上具有連續(xù)的二階導(dǎo)數(shù),則在?a,b?內(nèi)存在?,

b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。?a?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。試證

?b?a?f?a???af?x?dx??b?a?f?b??f?a?。

b24.設(shè)函數(shù)f?x?在?a,b?上連續(xù),f??x?在?a,b?上存在且可積,f?a??f?b??0,試證f?x??1bf??x?dx(a?x?b)。?a211005.設(shè)f?x?在?0,1?上連續(xù),?f?x?dx?0,?xf?x?dx?1,求證存在一點x,

0?x?1,使f?x??4。

6.設(shè)f?x?可微,f?0??0,f??0??1,F(xiàn)?x???tfx2?t2dt,求lim0x?0x??F?x?。4x7.設(shè)f?x?在

4b?a,b?上連續(xù)可微,若f?a??f?b??0,則

f?x?dx?maxf??x?。??b?a?2aa?x?b8.設(shè)f?x?在?A,B?上連續(xù),A?a?b?B,求證lim?k?0baf?x?k??f?x?dx

k?f?b??f?a?。

9.設(shè)f?x?為奇函數(shù),在???,???內(nèi)連續(xù)且單調(diào)增加,F(xiàn)?x????x?3t?f?t?dt,

0x證明:(1)F?x?為奇函數(shù);(2)F?x?在?0,???上單調(diào)減少。

3

10.設(shè)f?x?可微且積分??f?x??xf?xt??dt的結(jié)果與x無關(guān),試求f?x?。

0111.若f???x?在?0,??連續(xù),f?0??2,f????1,證明:

??f?x??f???x??sinxdx?3。

0?12.求曲線y???t?1??t?2?dt在點(0,0)處的切線方程。

0x13.設(shè)f?x?為連續(xù)函數(shù),對任意實數(shù)a有

????a?asinxf?x?dx?0,求證

f?2??x??f?x?。

14.設(shè)方程2x?tg?x?y???x?y0d2ysectdt,求2。

dx215.設(shè)f?x?在?a,b?上連續(xù),求證:

h?0lim?1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b)h?ax2?1?x?016.當(dāng)x?0時,f?x?連續(xù),且滿足?f?t?dt?x,求f?2?。

17.設(shè)f?x?在?0,1?連續(xù)且遞減,證明

??f?x?dx??f?x?dx,其中???0,1?。

001?18.設(shè)f??x?連續(xù),F(xiàn)?x???f?t?f??2a?t?dt,f?0??0,f?a??1,試證:

0xF?2a??2F?a??1。

19.設(shè)g?x?是?a,b?上的連續(xù)函數(shù),f?x???g?t?dt,試證在?a,b?內(nèi)方程

axg?x??f?b??0至少有一個根。b?axxab20.設(shè)f?x?在?a,b?連續(xù),且f?x??0,又F?x???f?t?dt??(1)F??x??2(2)F?x??0在?a,b?內(nèi)有且僅有一個根。21.設(shè)f?x?在?0,2a?上連續(xù),則?2a01dt,證明:

f?t?f?x?dx???f?x??f?2a?x??dx。

0a22.設(shè)f?x?是以?為周期的連續(xù)函數(shù),證明:

?0?sinx?x?f?x?dx??0?2x???f?x?dx。

4

2??23.設(shè)f?x?在?a,b?上正值,連續(xù),則在?a,b?內(nèi)至少存在一點?,使

??af?x?dx??f?x?dx??1b1bf?x?dx。?a2x1f?u?1?24.證明?lnf?x?t?dt??lndu??lnf?u?du。

000f?u?25.設(shè)f?x?在?a,b?上連續(xù)且嚴(yán)格單調(diào)增加,則?a?b??f?x?dx?2?xf?x?dx。

aabb26.設(shè)f?x?在?a,b?上可導(dǎo),且f??x??M,f?a??0,則?f?x?dx?abM?b?a?2。227.設(shè)f?x?四處二階可導(dǎo),且f???x??0,又u?t?為任一連續(xù)函數(shù),則

1af?u?t??dt??0a?1a?f??u?t?dt?,?a?0?。?a0?b?a?b?28.設(shè)f?x?在?a,b?上二階可導(dǎo),且f???x??0,則?f?x?dx??b?a?f??。a?2?29.設(shè)f?x?在?a,b?上連續(xù),且f?x??0,?f?x?dx?0,證明在?a,b?上必有

abf?x??0。

30.f?x?在?a,b?上連續(xù),且對任何區(qū)間??,????a,b?有不等式

???f?x?dx?M???1??(M,?為正常數(shù)),試證在?a,b?上f?x??0。

第五章定積分

(A)

?1.?2sinxcos3xdx

0?解:原式???a0202314cosxdx??cosx?

4403?2.?x2a2?x2dx

解:令x?asint,則dx?acostdt當(dāng)x?0時t?0,當(dāng)x?a時t???2

原式??2a2sin2t?acost?acostdt

05

a4?444a?02sin2tdt?82?st?dt??1?co420??2a?a1???sin4t?a4

828416043.?3dxx211?x2

解:令x?tg?,則dx?sec2?d?當(dāng)x?1,3時?分別為

2sec?原式???32d?

tg?sec?4??,43????3?sin??dsin?

?24??2?4.?1?1233xdx5?4x

1512?u,dx??udu442解:令5?4x?u,則x?當(dāng)x??1,1時,u?3,1原式??5.?4115?u2du?3861??dxx?11

解:令x?t,dx?2tdt

當(dāng)x?1時,t?1;當(dāng)x?4時,t?2原式??212dt?2tdt?2?2??dt??111?t?1?t??222?2t1?ln?1?t?1?2?2ln

3??6.?341dx1?x?1

6

解:令1?x?u,則x?1?u2,dx??2udu當(dāng)x?31,1時u?,04201?2uu?1?1原式??1du?2?2du?1?2ln2

0u?1u?127.?e2dxx1?lnxe211

11?lnxe21e21解:原式??dlnx??11?lnxd?1?lnx?

?21?lnx8.?dx

?2x2?2x?20?23?2

解:原式??0?2dx1??x?1?2?arctg?x?1??2

0?arct??g1???arct1g?4??4??2

9.??01?cos2xdx

?0解:原式??2cos2xdx?2?cosxdx

0??2?coxdxs?2???coxs?dx

202???????2?sin?2?sinx0x???222??10.?x4sinxdx

???解:∵x4sinx為奇函數(shù)

∴?x4sinxdx?0

????11.?2?4cos4xdx

?2??420解:原式?4?2?2cosxdx?2?0?2cosx?dx

227

??2?20?1?cos2x??202dx?2?2?1?2cos2x?cos22x?dx

0?2?2?2x0?cos2xdx????20?1?cos4x?dx

2???2sin2x0?1???2cos4xd4x240???2313???sin4x??

2420x3sin2xdx12.?4?5x?2x2?15x3sin2x解:∵4為奇函數(shù)

x?2x2?1x3sin2xdx?0∴?4?5x?2x2?1513.??3xdx2sinx4??解:原式????3xdctgx

4??3x???3ctgxdx??xctg?44??13?3???lnsin?x????49?4???13?32???ln??ln???49?22???13?13???ln????49?22??14.?4lnxx1dx

4解:原式?2?lnxdx

18

?2?xlnx???11?44xdlnx?

??41???2?4ln2??xdx?

1x??12?8ln2?2?xdx

14??8ln2?415.?xarctgxdx

0111解:原式??arctgxdx2

2023x1?1?2??xarctgx??dx?2023?1?x???8?1111dxdx?2?02?01?x21111??x?arctgx82023????4?1216.?2e2xcosxdx

0?解:原式??2e2xdsinx

0??x?e2xsin?20??2sinx?2e2xdx

0?x?e?2?2e2xdcos0??2x0?x2?2?2cosx?2e2xdx?e?2ecos0?xdx?e?2?4?2e2xcos

0??故?2e2xcosxdx?01?e?25??17.?

2?xsinx?dx0?9

解:原式????xsinx?0?2dx??x20?1?cos2xdx21?21?2xdx?xcos2xdx??0022?1?x36?01?2xdsin2x?04??1?2?xsin2x??sin2x?2xd?x?0?0??64??3??36?1?xdco2sx?04?1??3????xco2sx0??co2sxdx????0??6464??318.?sin?lnx?dx

1e1e解:原式?xsin?lnx?1??xcos?lnx??dx

1xe?esin1??cos?lnx?dx

1e1?e??esin1??xcos?lnx?1??xsin?lnx??dx?

1x??e?esin1?ecos1?1??sin?lnx?dx

1e故?sin?lnx?dx?1ee?sin1?cos1?1?2?19.?2?cosx?cos3xdx

?4??解:原式??2?cosx1?cos2xdx

4????0??4coxs??sinx?dx??2coxssinxdx00??33?2??2?2s?2?????coxs?2????cox?33?????04442??

33

10

?20.?40sinxdx

1?sinx?解:原式??40sinx?1?sinx?dx21?sinxx?sin2???4??tgx?dx20cosx???????40dcoxs2??4secx?1dx20cosx????14?4???tgx?x?02??2?coxs04?21.??0xsinxdx21?cosx解:令x??2?t,則

???????t?sin??t????2??2?原式????2?dt

???21?cos2??t??2?tcots?dt????22221?sint1?sint2???cots????22.?xln120232?cots?2??sgindt??arctt?0241?sint1?xdx1?x120解:原式??1?x?x2lnd?1?x??212????12x1?xx1?x1?x??1?x???1??ln??2??dx2023?x021?x?1?x?221xdx?ln3??2ln208x?1111

1dx?ln3??2dx??22

00x?1811111x?1?ln3??ln

822x?10???1213?ln3281?x2dx23.???1?x4????1?x2dx?2?01?x4解:原式??01?12xdx1?x22x?2???011???x???2x????21??d?x??

x??1x?2xarctg?22?2?

0??24.?2lnsinxdx

0xx??解:原式??2ln?2sin?cos?dx令x?2t2?4?ln2?lnsint?lncost?dt

0022???????ln2?2??4lnsintdt??4lncotdts?

002?????

t??u2??????ln2?2??4lnsintdt???2lnsinudu?

024????2??ln2?2?2lnsintdt

0故?2lnsinxdx??0?2ln2

25.?

??0?dx1?x21?x???????0?

12

11解:令x?,則dx??2dt

tt1dt20??t?dtt原式??????1?t21?t?01?t21?t???2tt?????∴2???0?????dxdxx?dx????2?2?2?001?x1?x1?x1?x1?x1?x?????????????故?

????01???dx?arctgx?2023?x0?dx??2?41?x1?x???(B)

1.求由?etdt??costdt?0所決定的隱函數(shù)y對x的導(dǎo)數(shù)

00yxdy。dx解:將兩邊對x求導(dǎo)得

dy?cosx?0dxdycosx??y∴dxeey2.當(dāng)x為何值時,函數(shù)I?x???te?tdt有極值?

2x0解:I??x??xe?x,令I(lǐng)??x??0得x?0

2當(dāng)x?0時,I??x??0當(dāng)x?0時,I??x??0

∴當(dāng)x?0時,函數(shù)I?x?有微小值。

dcosx2cos?tdt。?sinxdxcostd?a22?cos?tdt?cos?tdt解:原式??a???sinx?dx?cosxd?sinx2??cos?tdt??cos?t2dt???a?a?dx?3.

????????????22s?sinx??sinx??co?scosx??cosx???co?13

2??co?ssincoxs?co?sco2sx??sinx?22??co?ssinxcoxs?sinxco?s??sinx2??sinx?coxs?cos?sinx

???????????x?1,x?12?4.設(shè)f?x???12,求?f?x?dx。

0x,x?1??2解:?f?x?dx???x?1?dx??00212112xdx2218?1???x2?x??x3?

?2?061315.lim2??arctgtdt?0xx???xx?12??arctgtdt?型?0?2。

解:limx???x?12x???lim?arctgx?21?12x?122x2??

?limx???x2?1?arct?gx?limx???x2x1?1arct2gx2x

x??1?22?lim1?2?arctgx??

x???4x?1x?sinx,0?x??6.設(shè)f?x???2,求??x???f?t?dt。

0?0,其它?解:當(dāng)x?0時,??x???f?t?dt??0dt?0

00xx當(dāng)0?x??時,??x???x11?cosxsintdt?022x?x當(dāng)x??時,??x???f?t?dt??f?t?dt??f?t?dt??00?0?x1sintdt??0dt?1?2當(dāng)?0時?0,??1故??x????1?cosx?,當(dāng)0?x??時。

?2當(dāng)x??時??1,

14

?1,當(dāng)x?0時??1?x7.設(shè)f?x????1,當(dāng)x?0時??1?ex?1,當(dāng)x?1時??x解:f?x?1????1,當(dāng)x?1時??1?ex?1,求?f?x?1?dx。

02

?202dx1f?x?1?dx????11??x?1?dx01?ex?112dx1?ex?1?ex?1??dx?1???x?1?01x1?e1?1?ln1?ex?1?ln?1?e?8.lim1n??n2??10?ln2

?n?2n???n2。

??12n?1?解:原式?lim??????n??nn??n?n?lim?n??i?1n1i12???xdx?

0nn39.求lim?n??k?1nekn2kn。

n?nen解:原式?lim?n??k?1ekn2kn1?e1nex?x1dx?arctge?arctg?e??001?e2x4110.設(shè)f?x?是連續(xù)函數(shù),且f?x??x?2?f?t?dt,求f?x?。

01解:令?f?t?dt?A,則f?x??x?2A,

0115

從而?f?x?dx???x?2A?dx?00111?2A2即A?11?2A,A??22∴f?x??x?111.若?2ln2xdte?1t??6,求x。

解:令et?1?u,則t?ln1?u2,dt?當(dāng)t?2ln2時,u?3當(dāng)t?x時,u?ex?1∴?2ln2x??2udu21?udte?1t??3ex?1?2udu?2arctgu1?u2u?3ex?1

?????2??arctgex?1??

?3?6從而x?ln212.證明:2e?121???212e?xdx?2。

2?11??x2證:考慮??,?上的函數(shù)y?e,則

22??y???2xe?x,令y??0得x?0

2?1?當(dāng)x???,0?時,y??0

2???1?當(dāng)x??0,?時,y??0

2??∴y?e?x2在x?0處取最大值y?1,且y?e?121?212?x21?x2在x??12處取最小值e?12

1故??212edx??edx???2121dx

16

即2e?121???212e?xdx?2。

x2???x?a?2?2x13.已知lim????a4xedx,求常數(shù)a。

x???x?a??2a???2a解:左端?lim?1???e

x????x?a?右端????ax??2xe?d??2x???2?2x??a??a?2x2de?2x

2?2x??2??xe???????a2xe?2xdx??

??2a2e?2a?2?axd?e2x

??a?2x?2a2e?2a?2??xe?????ae?2xdx??

??2a2?2a?1e?2a∴2a2?2a?1e?2a?e?2a解之a(chǎn)?0或a??1。

2??1?x,14.設(shè)f?x????x??e,????x?0x?0,求?f?x?2?dx。

13解:令x?2?t,則

?31f?x?2?dx??f?t?dt??1?tdt??e?tdt?2?1?1010??171?3e15.設(shè)f?x?有一個原函數(shù)為1?sinx,求?2xf??2x?dx。

2?0?解:令2x?t,且f?x???1?sin2x??sin2x

?

?20xf??2x?dx???0t11?f??t?dt??tf??t?dt2240?1?1?????????tdft?tft?ftdt?00???4?04??1?2tsin2t0?1?sint??0??0???4????16.設(shè)f?x??ax?b?lnx,在?1,3?上f?x??0,求出常數(shù)a,b使?f?x?dx最

13小。

17

解:當(dāng)?f?x?dx最小,即??ax?b?lnx?dx最小,由f?x??ax?b?lnx?0知,

1133y?ax?b在y?lnx的上方,其間所夾面積最小,則y?ax?b是y?lnx的切線,

而y??111,設(shè)切點為?x0,lnx0?,則切線y??x?x0??lnx0,故a?,xx0x0b?lnx0?1。

3?a?于是I???ax?b?lnx?dx??x2?bx???lnxdx

11?2?133?4a?2?1?lna???lnxdx

13??4?令I(lǐng)a21?0得a?a2從而x0?2,b?ln2?1

???又Ia32?0,此時?1f?x?dx最小。a2217.已知f?x??e?x,求?f??x?f???x?dx。

01解:f??x???2xe?x

2

?f??x?f???x?dx??011012f??x?df??x???f??x??

2023221??x????2xe??2??2e?2

018.設(shè)f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。

0021解:設(shè)?f?x?dx?A,?f?x?dx?B,則f?x??x2?Bx?2A

0012∴A??f?x?dx??x2?Bx?2Adx?11?B?2A

0032228∴B??f?x?dx??x2?Bx?2Adx??2B?4A

00314解得:A?,B?,于是

3342f?x??x2?x?

3311????19.?

?0?f?cosx?cosx?f??cosx?sinx?dx。

218

解:原式??f?cosx?cosxdx??sinxf??cosx?dcosx

00????f?coxs?coxdxs?sinxf?coxs?0??f?coxs?coxsdx?00???0

20.設(shè)x?0時,F(xiàn)?x???x2?t2f???t?dt的導(dǎo)數(shù)與x2是等價無窮小,試求

0x??f???0?。

?x?解:limx0x?02?t2f???t?dtx3x0?3??limx?0x02xf???t?dtx2

?limx?02?f???t?dtx?lim2xf?????????0,x??x?0x?2f???0??1故f???0??

(C)

1.設(shè)f?x?是任意的二次多項式,g?x?是某個二次多項式,已知

12?10b?1??1?f?x?dx??f?0??4f???f?1??,求?g?x?dx。

a6??2??解:設(shè)x??b?a?t?a,則

I??g?x?dx??g??b?a?t?a??b?a?dt

a0b1??b?a??g??b?a?t?a?dt

01令g??b?a?t?a??f?t?

?1??b?a?于是f?0??g?a?,f???g??,f?1??g?b?

22????由已知得I??b?a??b?a?????ga?4g?gb???6?2????2.設(shè)函數(shù)f?x?在閉區(qū)間?a,b?上具有連續(xù)的二階導(dǎo)數(shù),則在?a,b?內(nèi)存在?,

19

b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。?a?2?24證:由泰勒公式

f?x??f?x0??f??x0??x?x0??f??????x?x0?22!其中x0,x??a,b?,?位于x0與x之間。兩邊積分得:

f?????2?x?x0?dxa2!f?????3b?baf?x?dx??f?x0?dx??f??x0??x?x0?dx??aabb??b?a?f?x0??令x0?

f??x0??b?x0?2??a?x0?2?2??6??b?x?03??a?x0?

?a?b,則2?ba22?a?ba?b1a?ba?b?????????f?x?dx??b?a?f???f?????b????a???

2??2???2??2?2????33f???????a?b??a?b?????a????b?6?22??????????a?b?13??b?a?f????b?a?f?????,???a,b?。

?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。試證

?b?a?f?a???af?x?dx??b?a?f?b??f?a?。

b2證明:當(dāng)x??a,b?時,由f??x??0,f???x??0知f?x?是嚴(yán)格增及嚴(yán)格凹的,從而f?x??f?a?及f?x??f?a??bbaaf?b??f?a??x?a?b?a故?f?x?dx??f?a?dx??b?a?f?a?

?bab?f?b??f?a???f?x?dx???f?a??x?a??dx

ab?a??f?b??f?a?1?b?a?2

b?a2f?b??f?a???b?a?

2??b?a?f?a??4.設(shè)函數(shù)f?x?在?a,b?上連續(xù),f??x?在?a,b?上存在且可積,f?a??f?b??0,

20

1b試證f?x???f??x?dx(a?x?b)。

2a證明:由于在?a,b?上f??x?可積,故有

?baf??x?dx??f??t?dt??f??t?dt

axxaxb而f?x???f??t?dt,?f?x???f??t?dt

xbb1?x???ftdt?f??t?dt????x?a?2?b1x1bf?x????f??t?dt??f??t?dt???f??t?dt

?x?a?2a2?于是f?x??5.設(shè)f?x?在?0,1?上連續(xù),?f?x?dx?0,?xf?x?dx?1,求證存在一點x,

00110?x?1,使f?x??4。

證:假設(shè)f?x??4,x??0,1?

由已知?f?x?dx?0,?xf?x?dx?1,得

00111??xf?x?dx?011?111???fxdx?x???f?x?dx??0022????x?01111f?x?dx?4?x?dx

0221??11???1?2?4????x?dx??1?x??dx??1

02???2???21111f?x?dx?4?x?dx

022故?x?01從而?x?01?f?x??4?dx?02∴f?x??4?0

由于f?x?在?0,1?連續(xù),則f?x??4或f?x???4。從而?f?x?dx?4或?4,

01這與?f?x?dx?0矛盾。故f?x??4。

016.設(shè)f?x?可微,f?0??0,f??0??1,F(xiàn)?x???tfx2?t2dt,求lim0x?0x??F?x?。x421

1x2解:令x?t?u,則F?x???f?u?du,顯然F??x??xfx2

2023??F?x?F??x?fx2fx2?f?0?11?于是lim4?lim。???lim?lim?f0?2x?0xx?04x3x?04x2x?0444x?0??????7.設(shè)f?x?在

4b?a,b?上連續(xù)可微,若f?a??f?b??0,則

f?x?dx?maxf??x?。??b?a?2aa?x?b?a?b??a?b?證:因f?x?在?a,b?上連續(xù)可微,則f?x?在?a,,b?上均滿足拉?和?22????格朗日定理條件,設(shè)M?maxf??x?,則有

a?x?b?baf?x?dx??a?b2aa?b2af?x?dx??a?bf?x?dx

2bb????f?a??f???1??x?a?dx??a?bf?b??f???2??x?b?dx

2a?b2af???1??x?a?dx??a?bf???2??x?b?dx

2a?b2ab?M?故

4x?adx?M?a?bx?bdx?2bM?b?a?24f?x?dx?M。??b?a?2abak?0b8.設(shè)f?x?在?A,B?上連續(xù),A?a?b?B,求證lim?f?x?k??f?x?dx

k?f?b??f?a?。

證:?baf?x?k??f?x?1b1bdx??f?x?k?dx??f?x?dx

kkakabb?ka?ka令x?k?u,則?f?x?k?dx??于是?bf?u?du

f?x?k??f?k?1b?k1bdx??f?x?dx??f?x?dx

akka?kka1b?k1a?kf?x?dx??f?x?dx??kbkabf?x?k??f?x?1b?k1a?kdx?lim?f?x?dx?lim?f?x?dx故lim?bak?0ak?0k?0kkk

22

?f?b??f?a?

9.設(shè)f?x?為奇函數(shù),在???,???內(nèi)連續(xù)且單調(diào)增加,F(xiàn)?x????x?3t?f?t?dt,

0x證明:(1)F?x?為奇函數(shù);(2)F?x?在?0,???上單調(diào)減少。

證:(1)F??x???

f?x?為奇函數(shù)?x0??x?3t?f?t?dtt??u??0???x?3u?f??u?du

xx?0??x?3u?f?u?du???0?x?3u?f?u?du??F?x?

x∴F?x?為奇函數(shù)。

?xx??(2)F??x??x?f?t?dt?3?tf?t?dt??0?0???f?t?dt?xf?x??3xf?x?

0x??f?t?dt?2xf?x?

0x???f?t??f?x??dt?xf?x?

0x由于f?x?是奇函數(shù)且單調(diào)增加,當(dāng)x?0時,f?x??0,

??f?t??f?x??dt?0??0?t?x?,故F??x??0,x??0,???,即F?x?在?0,???上

0x單調(diào)減少。

10.設(shè)f?x?可微且積分??f?x??xf?xt??dt的結(jié)果與x無關(guān),試求f?x?。

01解:記??f?x??xf?xt??dt?C,則

01

?0?f?x??xf?xt??dt?f?x???0f?u?du?C

1x由f?x?可微,于是f??x??f?x??0

解之f?x??ke?x(k為任意常數(shù))

11.若f???x?在?0,??連續(xù),f?0??2,f????1,證明:

??f?x??f???x??sinxdx?3。

0?解:因?f???x?sinxdx??sinxdf??x?

00??23

?sinxf??x???0??0f??x?coxsdx????0f??x?coxsdx????coxsd?fx???f?x?coxs??00??0f?x?sinxdx?f????f?0????0f?x?sinxdx?1?2????0f?x?sinxdx?3??0f?x?sinxdx所以??0?f?x??f???x??sinxdx?3。

12.求曲線y??x0?t?1??t?2?dt在點(0,0)處的切線方程。

解:y???x?1??x?2?,則y??0??2,故切線方程為:y?0?2?x?0?,即y?2x。

13.設(shè)f?x?為連續(xù)函數(shù),對任意實數(shù)a有

???a??asinxf?x?dx?0,f?2??x??f?x?。

證:兩邊對a求導(dǎo)

sin???a?f???a????1?sin???a?f???a??0即f???a??f???a?

令a???x,即得f?2??x??f?x?。14.設(shè)方程2x?tg?x?y???x?y2d20sectdt,求ydx2。

解:方程兩邊對x求導(dǎo),得

2?se2c?x?y??1?y???se2c?x?y??1?y??

從而y??1?cos2?x?y??sin2?x?y?

y???2sin?x?y?co?sx?y??1?y???2sin?x?y?co3s?x?y?15.設(shè)f?x?在?a,b?上連續(xù),求證:

24

求證

1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b)limh?0?h?a證:設(shè)F?x?為f?x?的原函數(shù),則左邊?lim?h?01?F?x?h??F?a?h??F?x??F?a??h?F?x?h??F?x?F?a?h??F?a???lim??h?0??hh???f?x??f?a??右邊。16.當(dāng)x?0時,f?x?連續(xù),且滿足?解:等式兩邊對x求導(dǎo),得fx2?1?x?2x?3x2?1令x2?1?x??2得x?1將x?1代入得:f?2??5?1故f?2??1。5x2?1?x?0f?t?dt?x,求f?2?。

????17.設(shè)f?x?在?0,1?連續(xù)且遞減,證明

??f?x?dx??f?x?dx,其中???0,1?。

001?證:??f?x?dx?????f?x?dx??f?x?dx??

01?1?0??則??f?x?dx??f?x?dx

001????f?x?dx????1??f?x?dx

?01????1???f??1??????1?f??2?,?1???,1?,?2??0,???????1??f??1??f??2??由于f?x?遞減,f??1??f??2?故??f?x?dx??f?x?dx?0

001?即??f?x?dx??f?x?dx。

001?18.設(shè)f??x?連續(xù),F(xiàn)?x???f?t?f??2a?t?dt,f?0??0,f?a??1,試證:

0x25

F?2a??2F?a??1。

證:F?2a??2F?a?????2a02a0f?t?f??2a?t?dt?2?f?t?f??2a?t?dt

0a0af?t?f??2a?t?dt??f?t?f??2a?t?dtf?t?f??2a?t?d?2a?t???f?t?f??2a?t?dt

02a2aaa???2aa??f?t?f?2a?t?a??f??t?f??2a?t???f?t?f??2a?t?dt

0a在第一個積分中,令2a?t?u,則

?2aaf??t?f?2a?t?dt??f?u?f??2a?u?du

02a2a而?f?t?f?2a?t?a??f?2a?f?0??f故F?2a??2F?a??1

?a??1

19.設(shè)g?x?是?a,b?上的連續(xù)函數(shù),f?x???g?t?dt,試證在?a,b?內(nèi)方程

axg?x??f?b??0至少有一個根。b?a證:由積分中值定理,存在???a,b?使f?b???g?t?dt?g????b?a?

ab即g????f?b??0b?a故?是方程g?x??f?b??0的一個根。b?axxab20.設(shè)f?x?在?a,b?連續(xù),且f?x??0,又F?x???f?t?dt??(1)F??x??2(2)F?x??0在?a,b?內(nèi)有且僅有一個根。證:(1)F??x??f?x??ab1dt,證明:

f?t?1?2??fx(2)F?a???b1dt?0,F(xiàn)?b???f?t?dt?0

af?t?又F?x?在?a,b?連續(xù),由介值定理知F?x??0在?a,b?內(nèi)至少有一根。又F??x??0,則F?x?單增,從而F?x??0在?a,b?內(nèi)至多有一根。

26

故F?x??0在?a,b?內(nèi)有且僅有一個根。21.設(shè)f?x?在?0,2a?上連續(xù),則?證:?2a02a0f?x?dx???f?x??f?2a?x??dx。

0af?x?dx??f?x?dx??0a2aaf?x?dx

令x?2a?u,dx??du,則

?2aaf?x?dx??f?2a?u?du??f?2a?x?dx

00aa故?2a0f?x?dx???f?x??f?2a?x??dx

0a22.設(shè)f?x?是以?為周期的連續(xù)函數(shù),證明:

??sinx?x?f?x?dx???2x???f?x?dx。

002??證:?2?0?sinx?x?f?x?dx

?2?0???sinx?x?f?x?dx??令x???u,則

??sinx?x?f?x?dx

???u????u?f???u?du???sinx?x?f?x?dx??0?sin?02?2?????u???sinu?f?u?du(∵f?x?以?為周期)故?0?sinx?x?f?x?dx??0?2x???f?x?dx

b?23.設(shè)f?x?在?a,b?上正值,連續(xù),則在?a,b?內(nèi)至少存在一點?,使

??af?x?dx??f?x?dx??xbax1bf?x?dx。?a2證:令F?x???f?t?dt??f?t?dt由于x??a,b?時,f?x??0,故F?a????f?t?dt?0

abF?b???f?t?dt?0

ab故由零點定理知,存在一點???a,b?,使得F????0即?f?t?dt??f?t?dt?0

a?b?27

?f?x?dx???f?x?dx

ab?b又?f?x?dx??f?x?dx??f?x?dx?2?f?x?dx

aa?b??a故?f?x?dx??f?x?dx?a?b?1bf?x?dx。2?a1f?u?1?du??lnf?u?du。0f?u?24.證明?lnf?x?t?dt??ln001x證:設(shè)x?t?u?1,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論