概率論與隨機(jī)過程_第1頁
概率論與隨機(jī)過程_第2頁
概率論與隨機(jī)過程_第3頁
概率論與隨機(jī)過程_第4頁
概率論與隨機(jī)過程_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第3 量及其分二維 量及其分邊緣分布與 量的獨(dú)立條件分兩個 量函數(shù)的分n維 量簡 量. 二維 量及其分布函量,由它們構(gòu)成的一個向量(X1Xn)叫做維隨 量,需要考 ③并且還 各分量之間的聯(lián)系F(x1,x2,,xn)PX1x1,X2x2,,Xnxnk

xkk,{X1≤x1,…,Xn≤xn}是個 F(x1,x2,…,xn)是普通的則(X,Y)分布函數(shù)F(x,y)=P{Xx,Yy}在(x,y)處的函數(shù)值就 對于任意固定的y,當(dāng)x2>x1時,F(xiàn)(x2y)≥F(x1對于任意固定的x,當(dāng)y2>y1時,F(xiàn)(xy2)≥F(xy1)0≤F(x,y)≤1對于任意固定的y,F(-∞,y)=0;對于任意固定的x,F(x,-∞)=0;0≤P{X≤x,Y≤y}≤P{X≤(3).F(xy)=F(x+0,yF(xy)=F(xy+0)F(xy)關(guān)于x右連F(xy)=F(x+0,y)F(x+x,yF(xy)+P{x<X≤x+△x,Y≤P{x<X≤x△x,Y≤y}=Fx△x,yFx,≤P{x<X≤x+△x}(△x(4).對于任意(x1y1),(x2y2)x1<x2y1y2,下述不等式成F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,P{x1<Xx2,y1<Y=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,

量F(x)P(Xx二維 量F(x,y)P(Xx,Yx,y二維離散型 量及其分布若二維隨機(jī)向量(X,Y)的可能取值只有有限個或可列則稱(X,Y)是離散型二維隨機(jī)向若二維離散型隨機(jī)向量(X,Y)的所有可能取值記P{X=xi,Y=yj}=pij,i常用表格表示(X,Y)的分布律YX ………………(1).pij≥0,

piji j

因?yàn)镻(P((XxiYyjpiji j i1j X和YP(X

,Y

P(Xxk)k=1,2,pk0,k=1,2,ki,j=1,2, pij XYXY12341201/43001/440001/4則(X,Y)的分布函數(shù)F(x,y)

xix,yj其中和式是對一切滿足xi≤xyj≤yXY001010例若(X,Y)的分布律如下表XY001010解 1F(x,y) 1

x0或y11x0x1,y11xx1,0yx1,y二維連續(xù)型 量及其概率密 F(x,y) f(u, (2)f(x,y)dxdyF(,) 2F(x,y)

f(x, 因?yàn)镕x,y)

f(u,P{(X,Y)G}f(x,G在幾何上zf(x,y)表示空間的一個曲面.由性質(zhì)2于它和xoy平面的空間區(qū)域的體積為1,由性質(zhì)4, f(x,P{(x,y)f(x,Af(x,y)

A量量P{aXbaf(x)dxf(x)f(x)dx

f(x,y)dxdy例1:設(shè)二維 f(x,y)

2e(2xy),x0,y 其他(i)求分布函數(shù)F(x,y)(ii)求概率解: x2e(2xyyxF(x,y)yx

f(x,y)dxdy

x0,y

其(1e2x)(1ey即有Fx,y)

x0,y 其他P(YX)P{(X,Y)G}f(x,Gdy2e(2xy)dx 兩個重要的二維連續(xù)型型變1定義G是平面上的有限區(qū)域,面積為A,若二維 (x,y)f(x,y) 其他則稱(X,Y)在G上服從均勻分置無關(guān).則質(zhì)點(diǎn)的坐標(biāo)(X,Y)在G上服從均勻分布.22 11

[(x1)22(x1)(y2)(y2)22f(x,y)2

e2(12

1 x,y-∞<μ1μ2<+∞,σ1>0,σ2>0為:(X,Y)N(μ1,μ2,σ21,σ22,ρ).y=2x+1所圍。求:(X,Y)的概率密度與分布函 (x,y)f(x,y)D的面

其 F(x,y)

f(u,vu1)x,y)∈D2vuF(x,y)= u(2)2)D1:-1/2≤x<0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論