版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1/1高考數(shù)學(xué)不等式的幾種證明方法(菁選2篇)高考數(shù)學(xué)不等式的幾種證明方法11、比較法
包括比差和比商兩種方法。
2、綜合法
證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導(dǎo)出要證明的命題的方法稱為綜合法,它是由因?qū)Ч姆椒ā?/p>
3、分析法
證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個已經(jīng)證明過的定理、簡單事實或題設(shè)的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。
4、放縮法
證明不等式時,有時根據(jù)需要把需證明的不等式的值適當(dāng)放大或縮小,使其化繁為簡,化難為易,達到證明的目的,這種方法稱為放縮法。
5、數(shù)學(xué)歸納法
用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。
在證明第二步時,一般多用到比較法、放縮法和分析法。
6、反證法
證明高考數(shù)學(xué)不等式時,首先假設(shè)要證明的命題的反面成立,把它作為條件和高考數(shù)學(xué)不等式的幾種證明方法(菁選2篇)擴展閱讀
高考數(shù)學(xué)不等式的幾種證明方法(菁選2篇)(擴展1)
——初中數(shù)學(xué)不等式證明方法總結(jié)3篇
初中數(shù)學(xué)不等式證明方法總結(jié)1知識要點:不等式兩邊乘或除以同一個負(fù)數(shù),不等號的方向改變。(÷或×1個負(fù)數(shù)的時候要變號)。
不等式的證明
1、比較法
包括比差和比商兩種方法。
2、綜合法
證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導(dǎo)出要證明的命題的方法稱為綜合法,綜合法又叫順推證法或因?qū)Чā?/p>
3、分析法
證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個已經(jīng)證明過的定理、簡單事實或題設(shè)的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。
4、放縮法
證明不等式時,有時根據(jù)需要把需證明的不等式的值適當(dāng)放大或縮小,使其化繁為簡,化難為易,達到證明的目的,這種方法稱為放縮法。
5、數(shù)學(xué)歸納法
用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。
在證明第二步時,一般多用到比較法、放縮法和分析法。
6、反證法
證明不等式時,首先假設(shè)要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個與命題的條件或已證明的定理或公認(rèn)的簡單事實相矛盾的結(jié)論,以此說明原假設(shè)的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱為反證法。
知識要領(lǐng)總結(jié):證明不等式要注意不等式兩邊都乘以或除以一個負(fù)數(shù),要改變不等號的方向。
初中數(shù)學(xué)知識點總結(jié):*面直角坐標(biāo)系
下面是對*面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
*面直角坐標(biāo)系
*面直角坐標(biāo)系:在*面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成*面直角坐標(biāo)系。
水*的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為*面直角坐標(biāo)系的原點。
*面直角坐標(biāo)系的要素:①在同一*面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對*面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:*面直角坐標(biāo)系的構(gòu)成
對于*面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
*面直角坐標(biāo)系的構(gòu)成
在同一個*面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成*面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水*位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水*的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對*面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點的坐標(biāo)的性質(zhì)
建立了*面直角坐標(biāo)系后,對于坐標(biāo)系*面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)*面內(nèi)確定它所表示的一個點。
對于*面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負(fù)號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
高考數(shù)學(xué)不等式的幾種證明方法(菁選2篇)(擴展2)
——導(dǎo)數(shù)證明不等式的方法介紹(菁選2篇)
導(dǎo)數(shù)證明不等式的方法介紹11.當(dāng)x>1時,證明不等式x>ln(x+1)
設(shè)函數(shù)f(x)=xln(x+1)
求導(dǎo),f(x)'=11/(1+x)=x/(x+1)>0
所以f(x)在(1,+無窮大)上為增函數(shù)
f(x)>f(1)=1ln2>o
所以x>ln(x+1
2..證明:aa^2>0其中0
F(a)=aa^2
F'(a)=12a
當(dāng)00;當(dāng)1/2
因此,F(xiàn)(a)min=F(1/2)=1/4>0
即有當(dāng)00
3.x>0,證明:不等式xx^3/6
先證明sinx
因為當(dāng)x=0時,sinxx=0
如果當(dāng)函數(shù)sinxx在x>0是減函數(shù),那么它一定0x>0
再次用到函數(shù)關(guān)系,令x=0時,x2/2+cosx1值為0
再次對它求導(dǎo)數(shù)得xsinx
根據(jù)剛才證明的當(dāng)x>0sinx
x2/2cosx1是減函數(shù),在0點有最大值0
x2/2cosx10
所以xx3/6sinx是減函數(shù),在0點有最大值0
得xx3/6
利用函數(shù)導(dǎo)數(shù)單調(diào)性證明不等式XX2>0,X∈(0,1)成立
令f(x)=xx2x∈[0,1]
則f'(x)=12x
當(dāng)x∈[0,1/2]時,f'(x)>0,f(x)單調(diào)遞增
當(dāng)x∈[1/2,1]時,f'(x)0。
i、m、n為正整數(shù),且1
高考數(shù)學(xué)不等式的幾種證明方法(菁選2篇)(擴展3)
——數(shù)學(xué)均值不等式的證明方法(菁選2篇)
數(shù)學(xué)均值不等式的證明方法1設(shè)a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細(xì)過程,謝謝!!!!
你會用到均值不等式推廣的證明,估計是搞競賽的把
對n做反向數(shù)學(xué)歸納法
首先
歸納n=2^k的情況
k=1。。。
k成立k+1。。。
這些都很簡單的用a+b>=√(ab)可以證明得到
關(guān)鍵是下面的反向數(shù)學(xué)歸納法
如果n成立對n1,
你令an=(n1)次√(a1a2...a(n1)
然后代到已經(jīng)成立的n的式子里,整理下就可以得到n1也成立。
所以得證
數(shù)學(xué)均值不等式的證明方法2=2^k中k是什么范圍
k是正整數(shù)
第一步先去歸納2,4,8,16,32...這種2的k次方的數(shù)
一般的.數(shù)學(xué)歸納法是知道n成立時,去證明比n大的時候也成立。
而反向數(shù)學(xué)歸納法是在知道n成立的前提下,對比n小的數(shù)進行歸納,
指“*方*均”大于“算術(shù)*均”大于“幾何*均”大于“調(diào)和*均”
我記得好像有兩種幾何證法,一種三角證法,一種代數(shù)證法。
請賜教!
sqrt{[(a1)^2+(a2)^2+..(an)^2/n]}≥(a1+a2+..an)/n≥n次根號(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)
證明:
1.sqrt(((a1)^2+(a2)^2+..(an)^2)/n)≥(a1+a2+..an)/n
兩邊*方,即證((a1)^2+(a2)^2+..(an)^2)≥(a1+a2+..an)^2/n
高考數(shù)學(xué)不等式的幾種證明方法(菁選2篇)(擴展4)
——《基本不等式》教學(xué)反思5篇
《基本不等式》教學(xué)反思1昨天講了必修五第三章的`基本不等式。開堂先回憶了初中所學(xué)的有關(guān)不等式知識,并講解了基本不等式的幾何意義。接著又把不等式中的高考涉及的幾大問題都有所涉及。但是,一節(jié)課下來,感覺不是很好。
雖然一節(jié)課講了幾個高考考點,但是對于學(xué)生而言,剛剛接觸,理解的不是很透徹。我覺得應(yīng)該按照下面的方式來進行:一,第一節(jié)只講基本不等式及其幾何意義。讓學(xué)生通過練習(xí),充分理解不等式中的“一正,二定,三相等”的具體含義和應(yīng)用。并輔以高考題型,是學(xué)生掌握高考動向。二,第二節(jié)再講拼湊和分離這兩種與之前所學(xué)函數(shù)知識有關(guān)的題型。體現(xiàn)出不等式與函數(shù)的關(guān)聯(lián),說明函數(shù)在高中數(shù)學(xué)的重要性,順便回顧函數(shù)中的拼湊和分離這兩種方法。三,第三節(jié)課再講“1”的代換和圖像法。這兩種方法考察學(xué)生對知識的靈活變化以及對數(shù)形結(jié)合思想的應(yīng)用,又比第二節(jié)的知識深一點。這樣的話,三節(jié)課知識層層加深,讓學(xué)生體會到知識的關(guān)聯(lián),明確各個知識點在高考中的具體應(yīng)用。而初始方法中,一節(jié)課先把所有高考重點全講給學(xué)生,使學(xué)生容易迷惑,不知道本節(jié)課的重點到底是什么,而且學(xué)生不易掌握,畢竟容量大的話,練習(xí)量就會相應(yīng)減少。而等到第二節(jié),第三節(jié)再講時,學(xué)生掌握的不熟練,還得再次復(fù)習(xí),有點“燙剩飯”的感覺。
所以,講新課,尤其是講學(xué)生之前知識接觸不多的新課,一定要穩(wěn)扎穩(wěn)打,不能只求大容量,貼高考,也要站在學(xué)生的思維角度去準(zhǔn)備合適的內(nèi)容,順序以及授課方式。
《基本不等式》教學(xué)反思2*時我們聽課很多都是新授課,課的模式我們也探討很多了,而此節(jié)就課型而言應(yīng)算作習(xí)題課,為何上此課型,主要是提出一種上法,讓同仁加以探討,得出幾種模式。本節(jié)內(nèi)容是“基本不等式的應(yīng)用”,是在學(xué)生掌握用基本不等式技巧的基礎(chǔ)上進行的。
基本不等式的應(yīng)用主要是兩方面:
一是求最值,
二是它的實際應(yīng)用。
教學(xué)過程設(shè)計為四個環(huán)節(jié):
一是梳理基本不等式的知識點;
二是練習(xí)用基本不等式求函數(shù)的最值;
三是基本不等式在實際中的應(yīng)用;
四是高考中基本不等式的典型題型
時間安排是這樣:
第一環(huán)節(jié)大概5分鐘;第二環(huán)節(jié)大概10分鐘;第三環(huán)節(jié)大概15分鐘;第四環(huán)節(jié)大概10分鐘。
在實際操作時可能第一和第二環(huán)節(jié)有超時,故最后課堂內(nèi)容不能在40分鐘完成。當(dāng)然,我的目的只是提出一種習(xí)題課的課堂模式,具體時間上我們可以通過對習(xí)題的增減來達到吻合。對于第四環(huán)節(jié)可能同仁有不同看法,認(rèn)為只是讓學(xué)生看一下高考題,起不到實質(zhì)效果,還不如不要這個環(huán)節(jié)。我的設(shè)計意圖是讓學(xué)生了解此內(nèi)容在近幾年高考中出現(xiàn)的形式,并作為資料保存課后自己再練習(xí)加以鞏固。
高中一二年級的老師和學(xué)生,應(yīng)該要有三年一盤棋的思維和行動,每個內(nèi)容上完后把近幾年的經(jīng)典高考題拿出來進行分析,我覺得不論對學(xué)生或老師都相當(dāng)有益,如果能讓學(xué)生養(yǎng)成這個習(xí)慣,三年時間的積累,讓學(xué)生或多或少會對高考內(nèi)容的重點、難點,命題的形式及命題的規(guī)律有自己的研究或者是想法,相信對他們高三的復(fù)習(xí)和迎考有很大的幫助。
《基本不等式》教學(xué)反思3在復(fù)習(xí)完基本不等式第二課時后,我對這節(jié)課做了如下的反思:
一、在教學(xué)過程中要充分發(fā)揮學(xué)生的主體地位
在課堂上,無論是新教師還是老教師,通常會把自己當(dāng)做課堂上的主人而過多的會忽略學(xué)生的主體地位;或者學(xué)生會因為長時間的習(xí)慣于聽老師來講解而忘記自己是課堂的主人。
在這節(jié)課中,我設(shè)計了多個讓學(xué)生討論的環(huán)節(jié),但是當(dāng)我說了同學(xué)們可以和自己的同桌討論一下自己獲得的結(jié)論之后教室里還是會很安靜。這樣的課堂活動經(jīng)過了一分鐘后,我不得不自己來講解我設(shè)計好的問題。此時我感覺到這節(jié)已經(jīng)失敗了,因為我占據(jù)了本該屬于學(xué)生的時間。
二、要設(shè)計好教學(xué)問題
在教學(xué)中應(yīng)合理設(shè)計教學(xué)中所要用的問題,我設(shè)計的學(xué)生互動環(huán)節(jié)為什么沒有成功呢?我想很大的原因是我沒有設(shè)計好問題,在提問題時沒有明確我要求他們要給我什么樣的結(jié)果。在這節(jié)課中,我大部分的問題都是這樣問的:請同學(xué)們自己首先來做一下這道題目,然后跟自己的同桌討論一下自己的結(jié)果是否正確。當(dāng)學(xué)生聽到這樣的問題時,他們首先會自己一個人去完成題目,而不會跟自己的伙伴合作完成。而且在數(shù)學(xué)教學(xué)中對問題的梯度設(shè)計很重要,因為新課程很強調(diào)概念的形成過程,而概念的產(chǎn)生是一個抽象的過程,所以在教學(xué)時要非常好的展示給學(xué)生概念是怎么產(chǎn)生的,而這個教學(xué)環(huán)節(jié)就要求教師能夠設(shè)計好問題的梯度。
三、要學(xué)會設(shè)計有深度的問題
在本節(jié)課的教學(xué)中,我問的最多的'問題就是:同學(xué)們明白了沒有啊,或者對不對啊,是不是這樣的啊這
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小額貸款擔(dān)保及貸款利率調(diào)整及貸款條件變更及擔(dān)保人責(zé)任合同3篇
- 二零二五年度木工耗材供應(yīng)與配送合同4篇
- 01 修辭手法題的應(yīng)對策略-高考語文一輪復(fù)習(xí)之核心考點解密
- 七年級道德與法治試卷
- 信用激勵措施考核試卷
- 二零二五年度鋼材行業(yè)質(zhì)量標(biāo)準(zhǔn)制定與實施合同3篇
- 二零二五年度陵園墓碑雕刻技藝傳承合同4篇
- 2025版品牌視覺設(shè)計制作合同范本2篇
- 《菜根譚名句》課件
- 2025年因擅自公開他人隱私賠償協(xié)議
- 課題申報書:GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計研究
- 駱駝祥子-(一)-劇本
- 全國醫(yī)院數(shù)量統(tǒng)計
- 《中國香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺人群趨勢洞察報告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國幽門螺桿菌感染處理共識報告-
- 天津市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟學(xué)的思維方式(第13版)
- 盤錦市重點中學(xué)2024年中考英語全真模擬試卷含答案
- 手衛(wèi)生依從性調(diào)查表
- 湖北教育出版社四年級下冊信息技術(shù)教案
評論
0/150
提交評論