山東省安丘市景芝中學(xué)2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第1頁(yè)
山東省安丘市景芝中學(xué)2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第2頁(yè)
山東省安丘市景芝中學(xué)2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第3頁(yè)
山東省安丘市景芝中學(xué)2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第4頁(yè)
山東省安丘市景芝中學(xué)2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°2.下列運(yùn)算正確的是()A.2+a=3 B.=C. D.=3.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點(diǎn)A,與x軸相交于點(diǎn)B,點(diǎn)C在y軸上,若AC=BC,則點(diǎn)C的坐標(biāo)為()A.(0,1) B.(0,2) C. D.(0,3)4.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°5.tan45o的值為()A. B.1 C. D.6.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.7.某廠接到加工720件衣服的訂單,預(yù)計(jì)每天做48件,正好按時(shí)完成,后因客戶(hù)要求提前5天交貨,設(shè)每天應(yīng)多做x件才能按時(shí)交貨,則x應(yīng)滿(mǎn)足的方程為()A. B.C. D.8.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.9.一列快車(chē)從甲地駛往乙地,一列特快車(chē)從乙地駛往甲地,快車(chē)的速度為100千米/小時(shí),特快車(chē)的速度為150千米/小時(shí),甲乙兩地之間的距離為1000千米,兩車(chē)同時(shí)出發(fā),則圖中折線(xiàn)大致表示兩車(chē)之間的距離(千米)與快車(chē)行駛時(shí)間t(小時(shí))之間的函數(shù)圖象是A. B.C. D.10.計(jì)算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b611.對(duì)于有理數(shù)x、y定義一種運(yùn)算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運(yùn)算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.1112.下列圖形中,不是中心對(duì)稱(chēng)圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.分解因式______.14.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點(diǎn),將Rt△ABC沿CD折疊,使點(diǎn)B落在AC邊上的B′處,則∠ADB′等于_____.15.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點(diǎn)C為圓心,CB長(zhǎng)為半徑作弧,交AB于點(diǎn)D;再分別以點(diǎn)B和點(diǎn)D為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)E,作射線(xiàn)CE交AB于點(diǎn)F,則AF的長(zhǎng)為_(kāi)____.16.某一時(shí)刻,測(cè)得一根高1.5m的竹竿在陽(yáng)光下的影長(zhǎng)為2.5m.同時(shí)測(cè)得旗桿在陽(yáng)光下的影長(zhǎng)為30m,則旗桿的高為_(kāi)_________m.17.若關(guān)于x、y的二元一次方程組的解是,則關(guān)于a、b的二元一次方程組的解是_______.18.如果不等式無(wú)解,則a的取值范圍是________三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數(shù);四邊形ABCD的面積(結(jié)果保留根號(hào)).20.(6分)已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線(xiàn)交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).(1)若C是半徑OB中點(diǎn),求的正弦值;(2)若E是弧AB的中點(diǎn),求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時(shí),求CD的長(zhǎng).21.(6分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對(duì)體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點(diǎn)A到地面的鉛直高度AC長(zhǎng)度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計(jì)方案施工,新座位區(qū)最高點(diǎn)E到地面的鉛直高度EG長(zhǎng)度保持15米不變,使A、E兩點(diǎn)間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請(qǐng)問(wèn)施工方提供的設(shè)計(jì)方案是否滿(mǎn)足安全要求呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)22.(8分)在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請(qǐng)判斷△APQ是什么形狀的三角形?試說(shuō)明你的結(jié)論.23.(8分)已知a,b,c為△ABC的三邊,且滿(mǎn)足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.24.(10分)元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國(guó)家植物園(記為D)中的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹(shù)狀圖或列表的方法求小明和小華都選擇去秦嶺國(guó)家植物園游玩的概率.25.(10分)拋物線(xiàn):與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),拋物線(xiàn)的頂點(diǎn)為.(1)拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)________;(2)當(dāng)時(shí),求拋物線(xiàn)的函數(shù)表達(dá)式;(3)在(2)的條件下,直線(xiàn):經(jīng)過(guò)拋物線(xiàn)的頂點(diǎn),直線(xiàn)與拋物線(xiàn)有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)分別記為,,直線(xiàn)與直線(xiàn)的交點(diǎn)的橫坐標(biāo)記為,若當(dāng)時(shí),總有,請(qǐng)結(jié)合函數(shù)的圖象,直接寫(xiě)出的取值范圍.26.(12分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.27.(12分)先化簡(jiǎn)分式:(-)÷?,再?gòu)?3、-3、2、-2中選一個(gè)你喜歡的數(shù)作為的值代入求值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點(diǎn)睛】本題主要考查平行線(xiàn)的性質(zhì):兩直線(xiàn)平行,同位角相等.快速解題的關(guān)鍵是牢記平行線(xiàn)的性質(zhì).2、D【解析】

根據(jù)整式的混合運(yùn)算計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、2與a不是同類(lèi)項(xiàng),不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.3、B【解析】

根據(jù)方程組求出點(diǎn)A坐標(biāo),設(shè)C(0,m),根據(jù)AC=BC,列出方程即可解決問(wèn)題.【詳解】由,解得或,

∴A(2,1),B(1,0),

設(shè)C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案為(0,2).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)問(wèn)題、勾股定理、方程組等知識(shí),解題的關(guān)鍵是會(huì)利用方程組確定兩個(gè)函數(shù)的交點(diǎn)坐標(biāo),學(xué)會(huì)用方程的思想思考問(wèn)題.4、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點(diǎn):1.面動(dòng)旋轉(zhuǎn)問(wèn)題;2.平行線(xiàn)的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).5、B【解析】

解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.6、D【解析】

連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長(zhǎng)度,最后勾股定理即可求出CE的長(zhǎng)度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點(diǎn)睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識(shí),綜合程度較高,屬于中等題型.7、D【解析】

因客戶(hù)的要求每天的工作效率應(yīng)該為:(48+x)件,所用的時(shí)間為:,根據(jù)“因客戶(hù)要求提前5天交貨”,用原有完成時(shí)間減去提前完成時(shí)間,可以列出方程:.故選D.8、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線(xiàn)上,設(shè)圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設(shè)圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點(diǎn):垂徑定理的應(yīng)用.9、C【解析】分三段討論:①兩車(chē)從開(kāi)始到相遇,這段時(shí)間兩車(chē)距迅速減??;②相遇后向相反方向行駛至特快到達(dá)甲地,這段時(shí)間兩車(chē)距迅速增加;③特快到達(dá)甲地至快車(chē)到達(dá)乙地,這段時(shí)間兩車(chē)距緩慢增大;結(jié)合圖象可得C選項(xiàng)符合題意.故選C.10、D【解析】

根據(jù)積的乘方與冪的乘方計(jì)算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點(diǎn)睛】本題主要考查冪的乘方與積的乘方,解題的關(guān)鍵是掌握積的乘方與冪的乘方的運(yùn)算法則.11、B【解析】

先由運(yùn)算的定義,寫(xiě)出3△5=25,4△7=28,得到關(guān)于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運(yùn)算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個(gè)方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點(diǎn)睛】本題考查了新運(yùn)算、三元一次方程組的解法.解決本題的關(guān)鍵是根據(jù)新運(yùn)算的意義,正確的寫(xiě)出3△5=25,4△7=28,2△2.12、C【解析】

根據(jù)中心對(duì)稱(chēng)圖形的定義依次判斷各項(xiàng)即可解答.【詳解】選項(xiàng)A、平行四邊形是中心對(duì)稱(chēng)圖形;選項(xiàng)B、圓是中心對(duì)稱(chēng)圖形;選項(xiàng)C、等邊三角形不是中心對(duì)稱(chēng)圖形;選項(xiàng)D、正六邊形是中心對(duì)稱(chēng)圖形;故選C.【點(diǎn)睛】本題考查了中心對(duì)稱(chēng)圖形的判定,熟知中心對(duì)稱(chēng)圖形的定義是解決問(wèn)題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(x+y+z)(x﹣y﹣z).【解析】

當(dāng)被分解的式子是四項(xiàng)時(shí),應(yīng)考慮運(yùn)用分組分解法進(jìn)行分解.本題后三項(xiàng)可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【點(diǎn)睛】本題考查了用分組分解法進(jìn)行因式分解.難點(diǎn)是采用兩兩分組還是三一分組.本題后三項(xiàng)可組成完全平方公式,可把后三項(xiàng)分為一組.14、40°.【解析】

∵將Rt△ABC沿CD折疊,使點(diǎn)B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.15、1;【解析】分析:根據(jù)輔助線(xiàn)做法得出CF⊥AB,然后根據(jù)含有30°角的直角三角形得出AB和BF的長(zhǎng)度,從而得出AF的長(zhǎng)度.詳解:∵根據(jù)作圖法則可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.點(diǎn)睛:本題主要考查的是含有30°角的直角三角形的性質(zhì),屬于基礎(chǔ)題型.解題的關(guān)鍵就是根據(jù)作圖法則得出直角三角形.16、1.【解析】分析:根據(jù)同一時(shí)刻物高與影長(zhǎng)成比例,列出比例式再代入數(shù)據(jù)計(jì)算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點(diǎn)睛:本題考查了相似三角形在測(cè)量高度時(shí)的應(yīng)用,解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立數(shù)學(xué)模型來(lái)解決問(wèn)題.17、【解析】分析:利用關(guān)于x、y的二元一次方程組的解是可得m、n的數(shù)值,代入關(guān)于a、b的方程組即可求解,利用整體的思想找到兩個(gè)方程組的聯(lián)系再求解的方法更好.詳解:∵關(guān)于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關(guān)于a、b的二元一次方程組整理為:解得:點(diǎn)睛:本題考查二元一次方程組的求解,重點(diǎn)是整體考慮的數(shù)學(xué)思想的理解運(yùn)用在此題體現(xiàn)明顯.18、a≥1【解析】

將不等式組解出來(lái),根據(jù)不等式組無(wú)解,求出a的取值范圍.【詳解】解得,∵無(wú)解,∴a≥1.故答案為a≥1.【點(diǎn)睛】本題考查了解一元一次不等式組,解題的關(guān)鍵是熟練的掌握解一元一次不等式組的運(yùn)算法則.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1);(2)【解析】

(1)連接AC,由勾股定理求出AC的長(zhǎng),再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,進(jìn)而可求出∠BAD的度數(shù);

(2)由(1)可知△ABC和△ADC是Rt△,再根據(jù)S四邊形ABCD=S△ABC+S△ADC即可得出結(jié)論.【詳解】解:(1)連接AC,如圖所示:∵AB=BC=1,∠B=90°∴AC=,又∵AD=1,DC=,∴AD2+AC2=3CD2=()2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四邊形ABCD=S△ABC+S△ADC=1×1×+1××=.【點(diǎn)睛】考查的是勾股定理、勾股定理的逆定理及三角形的面積,根據(jù)題意作出輔助線(xiàn),構(gòu)造出直角三角形是解答此題的關(guān)鍵.20、(2);(2)詳見(jiàn)解析;(2)當(dāng)是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時(shí),判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時(shí),判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點(diǎn)D和點(diǎn)O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點(diǎn),∴OCOB=2.∵DE是AC的垂直平分線(xiàn),∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線(xiàn),∴AE=CE.∵E是弧AB的中點(diǎn),∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當(dāng)CD=CE時(shí).∵DE是AC的垂直平分線(xiàn),∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長(zhǎng)為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當(dāng)CD=DE時(shí).∵DE是AC垂直平分線(xiàn),∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點(diǎn)D和點(diǎn)O重合,此時(shí),點(diǎn)C和點(diǎn)B重合,∴CD=2.綜上所述:當(dāng)△DCE是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.【點(diǎn)睛】本題是圓的綜合題,主要考查了勾股定理,線(xiàn)段垂直平分線(xiàn)的性質(zhì),菱形的判定和性質(zhì),銳角三角函數(shù),作出輔助線(xiàn)是解答本題的關(guān)鍵.21、不滿(mǎn)足安全要求,理由見(jiàn)解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過(guò)已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計(jì)方案不滿(mǎn)足安全要求”.【詳解】解:施工方提供的設(shè)計(jì)方案不滿(mǎn)足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計(jì)方案不滿(mǎn)足安全要求.22、(1)證明見(jiàn)解析;(2)△APQ是等邊三角形.【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點(diǎn)睛】本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關(guān)鍵.23、等腰直角三角形【解析】

首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形或等腰直角三角形.考點(diǎn):勾股定理的逆定理.24、(1);(2)【解析】

(1)利用概率公式直接計(jì)算即可;

(2)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與小明和小華都選擇去同一個(gè)地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論