版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國古代數(shù)學巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.12.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則3.已知,,,則的取值范圍是()A. B. C. D.4.在某種新型材料的研制中,實驗人員獲得了下列一組實驗數(shù)據(jù):現(xiàn)準備用下列四個函數(shù)中的一個近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個是()345.156.1264.04187.51218.01A. B. C. D.5.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分圖象如圖所示,則f(x)的解析式為()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+16.如圖,在等腰梯形中,,于點,則()A. B.C. D.7.已知等比數(shù)列中,若,且成等差數(shù)列,則()A.2 B.2或32 C.2或-32 D.-18.閱讀下面的程序框圖,運行相應的程序,若輸入的值為24,則輸出的值為()A.0 B.1 C.2 D.39.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則()A. B. C. D.10.數(shù)列{an}的通項公式an=,若{an}前n項和為24,則n為().A.25 B.576 C.624 D.625二、填空題:本大題共6小題,每小題5分,共30分。11.觀察下列等式:(1);(2);(3);(4),……請你根據(jù)給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復),這個等式可以是__________________.(答案不唯一)12.若直線與直線平行,則實數(shù)a的值是________.13.函數(shù)的最小值為____________.14.函數(shù),的值域是_____.15.若數(shù)列的前4項分別是,則它的一個通項公式是______.16.已知,,,則在方向上的投影為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.18.在中,角所對的邊分別為.(1)若為邊的中點,求證:;(2)若,求面積的最大值.19.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.20.已知向量,.(1)當時,求的值;(2)設函數(shù),已知在中,內(nèi)角、、的對邊分別為、、,若,,,求的取值范圍.21.如圖,在四棱柱中,側(cè)棱底面,,,,,且點和分別為和的中點.(1)求證:平面;(2)求二面角的正弦值;(3)設為棱上的點,若直線和平面所成角的正弦值為,求線段的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.2、B【解析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點:空間點線面位置關系.3、D【解析】
根據(jù)所給等式,用表示出,代入中化簡,令并構(gòu)造函數(shù),結(jié)合函數(shù)的圖像與性質(zhì)即可求得的取值范圍.【詳解】因為,所以,由解得,因為,所以,則由可得,令,.所以畫出,的圖像如下圖所示:由圖像可知,函數(shù)在內(nèi)的值域為,即的取值范圍為,故選:D.【點睛】本題考查了由等式求整式的取值范圍問題,打勾函數(shù)的圖像與性質(zhì)應用,注意若使用基本不等式,注意等號成立條件及自變量取值范圍影響,屬于中檔題.4、A【解析】
由表中的數(shù)據(jù)分析得:自變量基本上是等速增加,相應的函數(shù)值增加的速度越來越快,結(jié)合基本初等函數(shù)的單調(diào)性,即可得出答案.【詳解】對于A:函數(shù)在是單調(diào)遞增,且函數(shù)值增加速度越來越快,將自變量代入,相應的函數(shù)值,比較接近,符合題意,所以正確;對于B:函數(shù)值隨著自變量增加是等速的,不合題意;對于C:函數(shù)值隨著自變量的增加比線性函數(shù)還緩慢,不合題意;選項D:函數(shù)值隨著自變量增加反而減少,不合題意.故選:A.【點睛】本題考查函數(shù)模型的選擇和應用問題,解題的關鍵是掌握各種基本初等函數(shù),如一次函數(shù),二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)的圖像與性質(zhì),屬于基礎題.5、D【解析】
由已知列式求得的值,再由周期求得的值,利用五點作圖的第二個點求得的值,即可得到答案.【詳解】由題意,根據(jù)三角函數(shù)的圖象,可得,解得,又由,解得,則,又由五點作圖的第二個點可得:,解得,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了由的部分圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的五點作圖法,以及三角函數(shù)的圖象與性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.6、A【解析】
根據(jù)等腰三角形的性質(zhì)可得是的中點,由平面向量的加法運算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因為,所以是的中點,可得,故選.【點睛】本題主要考查向量的幾何運算以及向量平行的性質(zhì),屬于簡單題.向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單)7、B【解析】
根據(jù)等差數(shù)列與等比數(shù)列的通項公式及性質(zhì),列出方程可得q的值,可得的值.【詳解】解:設等比數(shù)列的公比為q(),成等差數(shù)列,,,,解得:,,,故選B.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的定義及性質(zhì),熟悉其性質(zhì)是解題的關鍵.8、C【解析】
根據(jù)給定的程序框圖,逐次循環(huán)計算,即可求解,得到答案.【詳解】由題意,第一循環(huán):,能被3整除,不成立,第二循環(huán):,不能被3整除,不成立,第三循環(huán):,不能被3整除,成立,終止循環(huán),輸出,故選C.【點睛】本題主要考查了程序框圖的識別與應用,其中解答中根據(jù)條件進行模擬循環(huán)計算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、D【解析】
根據(jù)任意角三角函數(shù)定義可求得;根據(jù)誘導公式可將所求式子化為,代入求得結(jié)果.【詳解】由得:本題正確選項:【點睛】本題考查任意角三角函數(shù)值的求解、利用誘導公式化簡求值問題;關鍵是能夠通過角的終邊上的點求得角的三角函數(shù)值.10、C【解析】an==-(),前n項和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結(jié)出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關系和補角關系是解題的關鍵,屬于基礎題12、0【解析】
解方程即得解.【詳解】因為直線與直線平行,所以,所以或.當時,兩直線重合,所以舍去.當時,兩直線平行,滿足題意.故答案為:【點睛】本題主要考查兩直線平行的性質(zhì),意在考查學生對這些知識的理解掌握水平,屬于基礎題.13、【解析】
將函數(shù)構(gòu)造成的形式,用換元法令,在定義域上根據(jù)新函數(shù)的單調(diào)性求函數(shù)最小值,之后可得原函數(shù)最小值?!驹斀狻坑深}得,,令,則函數(shù)在遞增,可得的最小值為,則的最小值為.故答案為:【點睛】本題考查了換元法,以及函數(shù)的單調(diào)性,是基礎題。14、【解析】
首先根據(jù)的范圍求出的范圍,從而求出值域。【詳解】當時,,由于反余弦函數(shù)是定義域上的減函數(shù),且所以值域為故答案為:.【點睛】本題主要考查了復合函數(shù)值域的求法:首先求出內(nèi)函數(shù)的值域再求外函數(shù)的值域。屬于基礎題。15、【解析】
根據(jù)等比數(shù)列的定義即可判斷出該數(shù)列是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列的通項公式即可寫出該數(shù)列的一個通項公式.【詳解】解:∵,該數(shù)列是以為首項,為公比的等比數(shù)列,該數(shù)列的通項公式是:,故答案為:.【點睛】本題主要考查等比數(shù)列的定義以及等比數(shù)列的通項公式,屬于基礎題.16、【解析】
根據(jù)數(shù)量積的幾何意義計算.【詳解】在方向上的投影為.故答案為:1.【點睛】本題考查向量的投影,掌握投影的概念是解題基礎.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)an=3n–4,(3)Sn=n3–8n,最小值為–1.【解析】分析:(1)根據(jù)等差數(shù)列前n項和公式,求出公差,再代入等差數(shù)列通項公式得結(jié)果,(3)根據(jù)等差數(shù)列前n項和公式得的二次函數(shù)關系式,根據(jù)二次函數(shù)對稱軸以及自變量為正整數(shù)求函數(shù)最值.詳解:(1)設{an}的公差為d,由題意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通項公式為an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以當n=4時,Sn取得最小值,最小值為–1.點睛:數(shù)列是特殊的函數(shù),研究數(shù)列最值問題,可利用函數(shù)性質(zhì),但要注意其定義域為正整數(shù)集這一限制條件.18、(1)詳見解析;(2)1.【解析】
(1)證法一:根據(jù)為邊的中點,可以得到向量等式,平方,再結(jié)合余弦定理,可以證明出等式;證法二:分別在和中,利用余弦定理求出和的表達式,利用,可以證明出等式;(2)解法一:解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,利用已知,再結(jié)合基本不等式,最后求可求出面積的最大值;解法二:利用余弦定理把表示出來,結(jié)合重要不等式,再利用三角形面積公式可得,令設,利用輔助角公式,可以求出的最大值,即可求出面積的最大值.【詳解】(1)證法一:由題意得①由余弦定理得②將②代入①式并化簡得,故;證法二:在中,由余弦定理得,在中,由余弦定理得,∵,∴,則,故;(2)解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,又已知,則,即,當時,等號成立,故,即面積的最大值為1.解法二:設則由,故.【點睛】本題考查了余弦定理、三角形面積公式的應用,考查了重要不等式及基本不等式,考查了數(shù)學運算能力.19、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】
(1)將代入,結(jié)合可求出的值;(2)可知,,即可證明結(jié)論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得,從而,所以.因為,所以,所以.,,,,當n=1時,,故;當n=2時,,;當n≥3時,,則,.【點睛】本題主要考查了數(shù)列的遞推關系式和數(shù)列的求和,考查了不等式的證明,考查了學生的邏輯推理能力與計算能力,屬于難題.20、(1);(2)【解析】
(1)由共線向量的坐標運算化簡可得,將化切后代入即可(2)利用向量的坐標運算化簡,利用正弦定理求,根據(jù)角的范圍求值域即可.【詳解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范圍是.【點睛】本題主要考查了向量數(shù)量積的坐標運算,三角恒等式,型函數(shù)的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《板帶材生產(chǎn)概述》課件
- 《電子交易》課件
- DBJT 13-302-2018 現(xiàn)澆混凝土空心樓蓋應用技術(shù)規(guī)程
- 第18課 從九一八事變到西安事變(解析版)
- 名著之魅 解析與啟示
- 體育場館衛(wèi)生消毒流程
- 腫瘤科護士年終總結(jié)
- 2023-2024年項目部安全管理人員安全培訓考試題答案典型題匯編
- 2023年-2024年生產(chǎn)經(jīng)營單位安全教育培訓試題答案往年題考
- 外貿(mào)公司實習報告合集九篇
- 水電風電項目審批核準流程課件
- 足球教練員素質(zhì)和角色
- 初中八年級語文課件 桃花源記【省一等獎】
- 名校長工作總結(jié)匯報
- 商務接待禮儀流程
- 護理不良事件用藥錯誤講課
- 新教材人教版高中英語選擇性必修第一冊全冊教學設計
- 2024北京大興區(qū)初三(上)期末化學試卷及答案
- 媒體與新聞法律法規(guī)法律意識與職業(yè)素養(yǎng)
- 推土機-推土機構(gòu)造與原理
- 九年級化學課程綱要
評論
0/150
提交評論