微積分建立的時代背景和歷史意義_第1頁
微積分建立的時代背景和歷史意義_第2頁
微積分建立的時代背景和歷史意義_第3頁
微積分建立的時代背景和歷史意義_第4頁
微積分建立的時代背景和歷史意義_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

微積分建立的時代背景和歷史意義微積分(Calculus)用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關于變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。論被統一成微積分學的原因。中,微分學一般會先被引入。微積分學是微分學和積分學的總稱。它是一種數學思想,‘無限細分’就是微分,‘無限求和’就是積分。無限就是極限,極限的思想是微積分的基礎,它是用一種運動的思想看待問題。比如,子彈飛出槍膛的瞬間速度就是微分的概念,子彈每個瞬間所飛行的路程之和就是積分的概念。如果將整個數學比作一棵大樹,那么初等數學是樹的根,名目繁多的數學分支是樹枝,而樹干的主要部分就是微積分。微積分堪稱是人類智慧最偉大的成就之一。極限和微積分的概念可以追溯到古代。到了十七世紀后半葉,牛頓和萊布尼茨完成了許多數學家都參加過準備的工作,分別獨立地建立了微積分學。他們建立微積分的出發(fā)點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。微積分是與實際應用聯系著發(fā)展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學等多個分支中,有越來越廣泛的應用。特別是計算機的發(fā)明更有助于這些應用的不斷發(fā)展。客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變量的概念后,就有可能把運動現象用數學來加以描述了。由于函數概念的產生和運用的加深,也由于科學技術發(fā)展的需要,一門新的數學分支就繼解析幾何之后產生了,這就是微積分學。微積分學這門學科在數學發(fā)展中的地位是十分重要的,可以說它是繼歐氏幾何后,全部數學中的最大的一個創(chuàng)造。微積分學的建立從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經產生了。公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的“天下篇”中,記有“一尺之棰,日取其半,萬世不竭”。三國時期的劉徽在他的割圓術中提到“割之彌細,所失彌小,割之又割,以至于不可割,則與圓周和體而無所失矣?!边@些都是樸素的、也是很典型的極限概念。到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。第三類問題是求函數的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用于另一物體上的引力。十七世紀的許多著名的數學家、天文學家、物理學家都為解決上笛沙格;英國的巴羅、瓦里士;德國的開普勒;意大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創(chuàng)立做出了貢獻。十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創(chuàng)立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。牛頓和萊布尼茨建立微積分的出發(fā)點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重于從運動學來考慮,萊布尼茨卻是側重于幾何學來考慮的。牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變量是由點、線、面的連續(xù)運動產生的,否定了以前自己認為的變量是無窮小元素的靜止***。他把連續(xù)變量叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續(xù)運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用于分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現代的微分符號和基本微分法則。1686年,萊布尼茨發(fā)表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創(chuàng)設的微積分符號,遠遠優(yōu)于牛頓的符號,這對微積分的發(fā)展有極大的影響?,F在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。微積分學的創(chuàng)立,極大地推動了數學的發(fā)展,過去很多初等數學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力?;驇讉€人總結完成的。微積分也是這樣。不幸的事,由于人們在欣賞微積分的宏偉功效之余,在提出誰是這門學科的創(chuàng)立者的時候,竟然引起了一場悍然 ***,造成了歐洲陸的數學家和英國數學家的長期對立。英國數學在一個時期里閉關鎖國,囿于民族偏見,過于拘泥在牛頓的“流數術”中停步不前,因而數學發(fā)展整整落后了一百年。其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先后完成的。比較特殊的是牛頓創(chuàng)立微積分要比萊布尼茨早10年左右,但是正式公開發(fā)表微積分這一理論,萊布尼茨卻要比牛頓發(fā)表早三年。他們的研究各有長處,也都各有短處。那時候,由于民族偏見,關于發(fā)明優(yōu)先權的爭論竟從1699年始延續(xù)了一百多年。應該指出,這是和歷史上任何一項重大理論的完成都要經歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。這些基礎方面的缺陷,最終導致了第二次數學危機的產生。直到19理論進行了認真研究,建立了極限理論,后來又經過德國數學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發(fā)展開來。任何新興的、具有無量前途的科學成就都吸引著廣大的科學工作者。在微積分的歷史上也閃爍著這樣的一些明星:瑞士的雅科布·貝努利和他的兄弟約翰·貝努利、歐拉、法國的拉格朗日、科西……歐氏幾何也好,上古和中世紀的代數學也好,都是一種常量數學,微積分才是真正的變量數學,是數學中的大革命。微積分是高等數學的主要分支,不只是局限在解決力學中的變速問題,它馳騁在近代和現代科學技術園地里,建立了數不清的豐功偉績。微積分的基本內容研究函數,從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數學分析。但是現在一般已習慣于把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。微積分的基本概念和內容包括微分學和積分學。積分學的主要內容包括:定積分、不定積分等。微積分是與科學應用聯系著發(fā)展起來的。最初,牛頓應用微積分學及微分方程對第谷浩瀚的天文觀測數據進行了分析運算,得到了萬有引力定律,并進一步導出了開普勒行星運動三定律。此后,微積分學成了推動近代數學發(fā)展強大的引擎,同時也極大的推動了天文學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發(fā)展。并在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助于這些應用的不斷發(fā)展。一元微分定義:設函數y=f(x)在某區(qū)間內有定義,x0及x0+Δx在此區(qū)間內。如果函數的增量Δy=f(x0+Δx)?f(x0)可表示為Δy=AΔx0+o(Δx0)(其中A是不依賴于Δx的常數),而o(Δx0)是比Δx高階的無窮小,那么稱函數f(x)在點x0是可微的,且AΔx稱作函數在點x0相應于自變量增量Δx的微分,記作dy,即dy=AΔx。通常把自變量x的增量Δx稱為自變量的微分,記作dx,即dx=Δx。于是函數y=f(x)的微分又可記作dy=f'(x)dx。函數的微分與自變量的微分之商等于該函數的導數。因此,導數也叫做微商。幾何意義設Δx是曲線y=)上的點M的在橫坐標上的增量,Δy在點M對應Δx是曲線在點M的切線對應Δx在縱坐標上的增量。當|Δx|很小時,|Δy-dy|比|Δy|要小得多(高階無窮小),因此在點M[編輯本段]多元微分同理,當自變量為多個時,可得出多元微分的定義。積分是微分的逆運算,即知道了函數的導函數,反求原函數。一個函數的不定積分(亦稱原函數)指另一族函數,這一族函數的導函數恰為前一函數。其中:[F(x)+C]'=f(x)一個實變函數在區(qū)間[a,b]上的定積分,是一個實數。它等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論