飽和鐵心型超導(dǎo)限流器控制系統(tǒng)建模與仿真_第1頁
飽和鐵心型超導(dǎo)限流器控制系統(tǒng)建模與仿真_第2頁
飽和鐵心型超導(dǎo)限流器控制系統(tǒng)建模與仿真_第3頁
飽和鐵心型超導(dǎo)限流器控制系統(tǒng)建模與仿真_第4頁
飽和鐵心型超導(dǎo)限流器控制系統(tǒng)建模與仿真_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

飽和鐵心型超導(dǎo)限流器控制系統(tǒng)建模與仿真ControlSystemModelingandSimulationofSuperconductingCurrentLimiterwithSaturatedIron51015202530CoreAbstractThispaperpresentsabasicstructureofsuperconductingcurrentlimiterSFCLwithsaturatedironcoreandcomparestheadvantagesanddisadvantagesofseveralkindsofSFCLOnthisbasistheworkingprincipleofSFCLwithsaturatedironcoreisanalyzedandadynamicsystemmathematicalmodelofthistypeofSFCLisestablishedSimulationresultsshowthattheSFCLwithsaturatedironcorecanlimittheshortcircuitfaultcurrentquicklyandeffectivelyInthispaperacontrolsystemmodelwithinputofDCbiascurrentandacsupplyvoltageoutputofacimpedanceofSFCLispresentedThroughsimulationitshowsthatwhenshortcircuitfaultoccursthentheDCbiascurrentiscutofftheacimpedanceofSFCLincreasesgraduallyatlasturnintoasteadystateKeywordssystemmodelingSFCLsaturatedironcoredynamiccontrolsystemmodelacimpendance0IntroductionWiththelevelofshort-circuitcurrentofpowersystemgraduallyincreasestheeffectivelimitingshort-circuitcurrenthasbecomeanurgentproblemtobesolvedFortraditionallimitingmeasuresthoughitcouldbesomeresolutionoftheshort-circuitcurrentinhibitionbutwithoutexceptionitwillbringanegativeimpactontheoperationofthepowergridThesuperconductingfaultcurrentlimiterwithsaturatedironcorekeepsnotonlythemicro-impedancelowpowerlossintheperformanceduringnormaloperationbutalsowhenshortcircuitfaultoccursinthepowergriditcouldquicklyturnintohighimpedancetolimitfaultcurrentItcanreducesystemprotectionequipmentspecificationstoimprovetheexistingpowergridcapacitybringhighersystemreliabilityandpowerqualitywithevenbroaderapplications1TheAdvantagesandDisadvantagesoftheTypesofSuperconductingfaultcurrentlimiter11ResistiveSFCLResistance-typeSFCLwithsimplestructureshortresponsetimelowcurrentoverload3540coefficientlowpressuredropundernormaloperationetcisclosetopracticaluseintheworldHoweverthetotalcurrentflowsthroughthesuperconductingcoilduringnormaloperationHigh-currentsuperconductingcablesarerequiredwithlowAClossesAtpresenttheheavycurrentsuperconductingcablesespecially4-5kAabovearedifficulttomanufactureforthemechanicalandthermalproblemsThereforeintheresistance-typeSFCLtheratedcurrentisnotmorethan2kAMeanwhiletheresistance-typeSFCLofsuperconductingrecoverytimeistoolongtocopewiththeimplementationoffastre-closing-1-12Induction-typeSFCLInduction-typeSFCLwithoutcurrentleadsofsuperconductingcoilswithsimplestructurelessheatlosshasbothfunctionsoftransformerandcurrentlimiterHoweverwhenthequenching45ofoverallsuperconductingcoilsoccursthedevicewillnotproduceover-voltageAnditrequireshigh-currentACsuperconductingcablesInadditiontheneededassemblingnon-metallicDewarisstillinresearchstage13Mixed-typeSFCLMixed-typeSFCLisusingonlythesuperconductingcableswithmuchsmallercurrentlevel5055thanthelinecurrentItbringsthatsuperconductingcablesiseasytomakethesystemismoresimpleandthereducedweightofthesuperconductorwhichgreatlyreducesthetemperaturelossAtthesametimeduetothefaultduringthesaturationitlimitsandreducesRMSvalueofvoltageandcurrentthatcausesthereducingoftheheatingofthesuperconductingcoilItisconducivetotherecoveryofthesuperconductingstateHoweverfortheadoptionofconventionaltransformerstructurethetotallossofSFCLisgreaterandtheweightisheavierInadditionahigherbreakdownvoltageisgeneratedduringthefaultcurrentoccursAndthesaturationvoltagecancausedistortionItissimilarwiththeresistance-typeSFCLthekindofSFCLtakeslongtimetorecoversoitisnotconductivetotheimplementationoffastre-closing6014MagneticshieldingtypeSFCLFormagneticshieldingtypeSFCLtherequiredamountofhigh-temperaturesuperconductorsistheleastofavarietyofSFCLbecausesuperconductingshieldingcylinderislow-lossnotrequiringcurrentleadsandwithsosmallheatloadthatyoucanuseGMrefrigeratortocoolitInadditionthestraymagneticfieldoutsideissmallHowevertheweightofequipmentisheavyitsweightismoreheavythanresistance-typeSFCLinanorderofmagnitudefaultrecoverytime65islongeritneedstomaketwosetsofequipmentforrapidre-closingalongwithaswitchAtthesametimethetransientover-voltageisgeneratedduringcurrentlimitingAndthedevelopmentofashieldingcylinderhassomedifficulties15Non-inductivetypeSFCLThemainadvantagesofnon-inductivetypeSFCLareshortresponsetimeoffault70currentaboutthesub-microsecondlevellowimpedanceduringnormaloperationhalfoftheratedcurrentflowsthroughtriggercoilandthelimitingcoilindividuallyrequirementsforsuperconductingcableoftriggercoilarebelowtheresistance-typeSFCLsimplestructureButthedevicesrecoverytimeisaboutafewsecondsnotsuitableforrapidre-closing7516Bridge-typeSFCLBridge-typeSFCLsmainadvantagesarebelowIn05secondsitcouldrecoveryfromthesecondfailurewithouttheneedforthesecondsetofsystemitissuitableforre-closingBecausesuperconductingcoilisaDCcoiltherearenodifficultproblemofhigh-currentsuperconductingcableandnon-metallicDewarFortheabsenceofironcoreandcopperwindingpartsthetotalweightislightandlowcostDuringnormaloperationperiodthedevicedoesnotcausevoltage80dropharmonicandtransientThereducedrateoffaultcurrentcanbeadjustedHoweverduringnormaloperationtheamplitudeofsuperconductingcoilcurrentismorethantheDClineandsothecurrentlossinlowtemperaturefromleadsislargeAlsothepowerdiodebridgeandthebiassupplyarerequired-2-8517SaturatedcoretypeSFCLSaturatedcoretypeSFCLhasmanyadvantagesSuperconductingcoilduringthefaultcurrentlimitingdoesnotquenchItiscapableofauto-startmanytimessuitableformultiplere-closingoperationsSuperconductingcoilisaDCcoilsotheneededDCsuperconductingcablesiseasiertomanufacturethemetalDewaralsocanbeusedthevacuumcontainersforelectromagneticshieldingaremadeofaluminumalloyHoweverthecoreandconventional9095100105110115windingsaredesignedaccordingtotwotimesthesizeofthefaultpowersoitismoreheavyequipmentIroncoreinsaturationduringnormaloperationthereissignificantleakagemagneticfieldItwouldcausesignificantvoltageharmonicsduetorepeatchangingfromthecoresaturationtode-saturation[1-6]2TheBasicStructureofSuperconductingFaultCurrentlimiterwithSaturatedIronCoreSFCLswithdiverseprincipleshavebeenproposedabovesuchasresistiveinductivemagneticshieldingandsaturatedcoreSFCLsetc[7–9]MostofthemarebasedontheprincipleofthetransitionfromthesuperconductingtonormalconductingstateSNtransitionHoweverthesaturatedcoreHTSFCLachievesthepurposeoflimitingshortcurrentnotbyusingtheSNtransitionbutbythenonlinearpermeabilityofthemagneticcorewhichdoesnothavetheproblemofrecoverytimeSuperconductingcoilduringthefaultcurrentlimitingdoesnotquenchAtthesametimethehightemperaturesuperconductingcoilsaresuppliedbyadcsourceHenceitdoesnothaveacpowerlossForthiskindofSFCLitsstructureisshowninFigure1[1]ItconsistsofapairofsameironcoresEachcorehasanAClimitingwindingAsuperconductingwindingissuppliedbyadcsourcecontrolledbyaswitchIGBTorMOSFETTwoACwindingsareinserieswithoppositepolaritieswhiletheDCsuperconductingcoilisimposedbyDCbiascurrentUnderthenormalconditiontheDCbiascurrentmakecoressaturatedandtheimpedanceofACcoilsdecreasesgreatlyWhenfaultcurrentoccursshortcircuitcurrentcouldbedetectedintimeandtheIGBTswitchinDCcircuitiscontrolledoffwhichmakestheACcoilstobede-saturationwiththeinductanceofACcoilsincreasinggreatlyandthefaultcurrentcouldbelimited[1][2][3]ThiskindofSFCLisintheuseofthenonlinearchangesofmagneticpermeabilityofironcoretorestrictshort-circuitingfaultcurrentAndthesaturatedstatesofACcoilsmaketheimpedancegreatlylessthantheresistanceoftheratedloadAndtheIGBTswitchisconvenientlyandquicklycontrolledtochangetheimpedanceofACcoilsfromthecoresaturationtode-saturationwhichissuitableforre-closingButinevitablythesuperconductingcoilwillinduceanundesirablehighvoltageduringtheswitchoffwhichmaydestroythedccoilThisproblemhasbeendiscussedinauthorsanotherpaper[1]Inthispaperitdoesnotrepeatanymore-3-120Figure1TheStructureofSFCLwithSaturatedIronCore3WorkingPrincipleofSuperconductingFaultCurrentlimiterwithSaturatedIronCoreTheΨ-IcurveofbothacwindingsofSFCLcanbedescribedapproximatelybyfivelinear125130135segmentswithdifferentslopesasshowninFig2Curve1illustratesthemagnetizationcurveofsinglecorewithoutthedcbiaswhereitshowsabasiccharacterofaninductancewithironcoreCurves2and3plotthemagnetizationcurvesoftwocoresrespectivelywhenadcbiascurrentisimposedCurve4istheΨ-IcurveofthesaturatedcoreSFCLwhichisachievedbysummationofcurves2and3WhentheDCcurrentequalszeroidc0whiletheIGBTturnsofffromcurve1wecanseethattheACcurrentiacislimitedbythebothACwindingswithironcoreWhenthefluxΨΨ1theironcoreisnotsaturatedtheinductanceoftheACcoilingisrelativelylargeAndthetotalinductanceofsuperconductingfaultcurrentlimiterisLlimiter2dΨdtsoLlimiter2tgβ1WhentheACcurrentiacincreasesuntilΨ?Ψ1theironcoreissaturatedtheinductanceisrelativelysmallandLlimiter2tgβ2tgβ1tgβ2WhentheDCcurrentdoesnotequalzeroidc?0whiletheIGBTturnsontheinductanceofthesingle-phasecorecouldbeacquiredfromthecurve-4asfollowsLlimiter2tg2IIaLlimitertg1tg2IaIIb1Llimiter2tg2IIbWhensystemisinnormaloperationwithdcbiascurrentitworksinb-csectionofcurve4140145thesuperconductingDCcurrentmakesthetwocoresdeepsaturationandtheACcurrentcantmaketheACwindingde-saturationasshowninfig3AndtheimpedanceofSFCLturnstobeverysmallWhenACfaultcurrentoccursitworksina-bsectionanda-bsectiontheACwindingcurrentincreasesrapidlyasuddenincreaseofshortcircuitcurrentoftheACwindingmakesthetwocoresde-saturationinturnthefaultcurrentlimiterwithlargetransientimpedanceislimitingthefaultcurrentAtthistimethecontrolsystemdetectsthefaultACcurrentandturnsofftheIGBTimmediatelyItmeansthattheSFCLwithnoDCbiascurrentwouldbeequivalenttothewindingswithironcorewhichhaslargeACinductanceandcouldeffectivelimittheACfaultcurrentasshowninfig4[4][7][8][9]-4-150Figure2TheMagnetizationCurveofSingle-phaseSFCLwithSaturatedIronCoreFigure3TheWorkingPointofSingle-phaseSFCLwithDCBiasCurrentunderNormalWorkingConditions155Figure4TheWorkingPointofSingle-phaseSFCLwithoutDCBiasCurrentunderFaultWorkingConditions4MathematicalModelofSuperconductingFaultCurrentLimiterwithSaturatedIronCoreUndernormalworkingconditiontheequivalentcircuitofpowergridisshowninFigure5160165TheSFCLsironcoreisoversaturatedandtheimpedanceoftheACcoilsissmallItisalmostequivalenttotransmissionlineresistanceandhaslittleinfluenceonthegridHoweverwhenshort-circuitfaultoccursR0theIGBTturnsoffandtheironcoreofthelimiterisnotsaturatedanymoreTheimpedanceoftheACcoilsincreasesrapidlyandithasaprotectiveeffectonthegridandtheequivalentcircuitisshowninFigure6Single-phasesaturatedcoretypeSFCLhastwocoreshereinordertofacilitatethecalculationfirstlyconsideringacoreofhalf-wavecurrentlimiteritisonlyahalfcycleoffaultcurrentlimitingWeconsiderasinglephasehalf-wavecircuitwhichisshowninthefigure7Fromwhichwecangettheequation-5-UtLdiacddtdt2170whereutUsinωtisthepowersupplyvoltageListheinductanceforthetransformerandtransmissionlineristhetransmissionlineresistanceiacistheinstantaneousvalueofACcurrentNacisthenumberofACcoilsΦisthefluxofACcoilsAccordingtoAmperecircuitaltheoremwegetHlNaciacNdcidc3175whereHisthemagneticfielddensityofironcorelisthemagneticcircuitlengthoftheironcoreNdcstandsfortheDCcoilturnsidcstandsfortheinstantaneousDCcoilcurrentTotakeΦBSandBμhfBHintotheformula2whereSisthecross-sectionalareaoftheironcoreHfBisthemagnetizationcharacteristicB-HcurveandμfBstandsforthepermeabilityweget180didBdtdtdiacdBdtdtsimultaneousequations3thereareequations4diacdHdtdtHlNaciacNdcidc5Theaboveequationsdescribethesingle-phasehalf-wavesaturationmathematicalmodelofsaturatedcore-typeSFCLTheSFCLonlylimitsthecurrentinanegativehalf-cycleThefault185190currentisstillverylargeinapositivehalf-cycleBecauseACcurrenthastwodirectionsonedirectionmakesthemagneticfieldde-saturationanotherdirectionmakesthesaturationmagneticfieldfurtherdeepAfull-wavelimitershouldbeadoptedintheactualdesignAscanbeseenfromfigure8itconsistsoftwocoilsinserieswithoppositepolarityThemagneticfieldinthecentralcylindergeneratedbythetwocoilsinseriescancelsouteachotherThederivationofmathematicalmodelsissimilartotheaboveprocessThismathematicalmodelonthewholeisgivendirectlyasfollowsForthesinglephasefull-wave-typeSFCLwithsaturatedironcoresupposingthatthemagneticfieldofitsleftironcoreisHLandwhichofitsrightironcoreisHRlisthelengthofironcoremagneticcircuitNacisthenumberofACcoilturnsNdcisthenumberofDCcoilturns195iacistheACcoilcurrentidcisthebiascurrentofDCbiascoilgridvoltageisUtheratedloadisRtheequivalentinductanceoftransformersandtransmissionlinesisLtheequivalentresistanceoftransmissionlineisrRelatedequationsareHLfBLHRRSdBLBRdiacdtHLlNaciacNdcidcHRacacdcdc-6-6UtLLimiterrR200Figure5TheEquivalentCircuitofPowerGridunderNormalWorkingConditionFigure6TheEquivalentCircuitofPowerGridunderFaultCondition205Figure7Figure8TheSinglePhaseHalf-waveTheSinglePhaseFull-wave5TheMathematicalModelofTheControlSystemofSaturatedIronCore-typeSuperconductingFaultCurrentLimiter23210theACvoltageuandthesuperconductingbiasDCcurrentidcasthesysteminputandtheZacastheoutputUsuallytheACvoltageuisutUsinωtandchangingtheidcwecouldchangetheACimpedanceZacofSFCLWithrespecttothecircuitweknow-7-ZacUlimiterTIac1t21t21t21t2TT7Soasfollowswewillbuildstateequationsandoutputequationsaboutcontrolsystemof215SFCLAccordingtotheequation67werewritethemas2T1tiacdtLetsdefinestatevariablexiacandcontrolvariableu1uu2idcyZacandtakethemintoformula8wegetx1LR1t21t2T89220AccordingtoLetsdefineRl1NaciacNdcidcl1NaciacNdcidcFxu2NacSLNacNacSNacNacxNdcu2LNacxNdcu2llNacSNdcNacSNdcLNacxNdcu2LNacxNdcu2llwecouldrewrite9as225rR1gxu22221t1t2xdt106TheMATLABSimulationofMathematicalModelofSaturated-8-IronCore-typeSuperconductingFaultCurrentLimiterIntheMatlabplatformthe220V100AsaturatedcoretypeSFCLwassimulatedwithtwostatesofnormalstateR?0andshortcircuitfaultstateR0230ThemodelparametersofthesaturatedironcoretypeSFCLareasfollowspowervoltageuis220VsuperconductingDCcurrentidcis100ApowergridloadresistanceRis2Ωthetransmissionlineresistanceris005Ωmagneticpathlengthofironcorelis136mironcorecross-sectionalareaSis001254m2thenumberofACwindingturnsNdcis18ACinductanceLis686×10-5HDCwindingturnsNdcis10023561WaveformofFaultCurrentwithoutSFCLOnthisbasisasimulationofshort-circuitexperimentispresentedWhentheSFCLisnotusedthepowergridinnormalworkingconditionsduetotheexistenceofthepowersystemloadthevoltageandcurrentcanbekeptatalowerlevelWhenafaultoccurspowersystemloadquicklyreducestozerothenonlythepowertransmissionlineimpedancepresentswhichwill240leadtoarapidincreaseinthelevelofgridcurrentthatwillbringdamagetothepowerequipmentWhenthegridshort-circuitfaultoccursintimet50msthegridcurrentwaveformisshowninFigure9Figure9ShortCircuitCurrentWaveformwithoutSFCL245AscanbeseenfromFigure9whenthereisnocurrentlimiterthepowergridcurrentofashortcircuitfaultstateincreasedbynearlymanytimesthantheratedcurrentvalueexcessiveshort-circuitcurrentcandamageelectricalequipmentthereforeaddingcurrentlimiterisnecessary25062WaveformofFaultCurrentwithSFCLIfSFCLisadoptedundernormalworkingconditionsSFCLshowsverylowimpedanceithadnoeffectonthebasicoperationofthegridWhentheshort-circuitfaultoccurstheDCcurrentiscutoffthesaturatedcoretypeSFCLcanquicklyturnintoahighimpedanceandlimittheshort-circuitcurrentWhenthegridshort-circuitfaultoccursintimet50msthegridcurrentwaveformisshown255inFigure10andtheimpedanceofSFCLwaveformshowninFigure11-9-Figure10ShortCircuitCurrentWaveformwithSFCLFigure11ImpedanceofSFCLWaveformwithSFCL2607ThesimulationshowsthatthiskindofSFCLhasanobviouscurrentlimitingeffectiveConclusionandOutlookThroughsimulationwecanseethatsaturatedcore-typesuperconductingfaultcurrentlimitercanbeeffectiveinlimitingshort-circuitfaultcurrentofgridThiskindofcurrentlimitercansolvetheproblemofinsufficientbreakingcapacityofbreakerandreducetheassociatedtechnology265270targetsinelectricitymachineryhotetcaswellasreducethecostsandimprovedynamicstabilityofpowersystemAccordingtothismodelinBeijingInnopowersuperconductorcableCoLtdsuccessfullydevelopedtheexperimentalprototypeofathree-phase380V50AwiththeBi2223AgstripOnAprilthe35kV90MVAmajorsaturatedcoretypeSFCLishangingonPuJitransformersubstationinKunmingYunnanandrunningsuccessfullyItscontrolsystemwasdevelopedbyTianjinUniversityInordertofurtherimproveitsreliabilityimprovesystemoperationitisnecessarytoestablishitsdynamicsystemmodelAlsotheestablishmentoffaultdiagnosismodelandafaultdiagnosissystemisfurtherneededtowork-10-AcknowledgementsOptionalThankstoSpecializedResearchFundfortheDoctoralProgramofHigherEducationof275280285290295ChinaGrantNo003211References[1]HeYiLiChang-binWuAi-guoXinYingExperimentalofOver-voltageSuppressioninaHTSThree-phaseSaturatedCoreFaultCurrentLimiterbyaZnOVaristor[J]HighVoltageEngineering339154-158[2]HeYiWuAiguoXinYingRapidPatternRecognitionofFaultCurrentforHTSThreePhaseSaturatedIronCoreFaultCurrentLimiter[J]TransactionsOfChinaElectrotechnicalSociety24181-87[3]HeYiWuAi-guoXinYingResearchofrapidpatternrecognitionoffaultcurrentbasedonsupportvectormachineforHTSthree-phasesaturatedco

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論