中考數(shù)學重點知識點歸納2023_第1頁
中考數(shù)學重點知識點歸納2023_第2頁
中考數(shù)學重點知識點歸納2023_第3頁
中考數(shù)學重點知識點歸納2023_第4頁
中考數(shù)學重點知識點歸納2023_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第中考數(shù)學重點知識點歸納2023

中考數(shù)學重點知識點歸納

知識點1:一元二次方程的基本概念

1、一元二次方程3x2+5x—2=0的常數(shù)項是—2。

2、一元二次方程3x2+4x—2=0的一次項系數(shù)為4,常數(shù)項是—2。

3、一元二次方程3x2—5x—7=0的二次項系數(shù)為3,常數(shù)項是—7。

4、把方程3x(x—1)—2=—4x化為一般式為3x2—x—2=0。

知識點2:直角坐標系與點的位置

1、直角坐標系中,點A(3,0)在y軸上。

2、直角坐標系中,x軸上的任意點的橫坐標為0。

3、直角坐標系中,點A(1,1)在第一象限。

4、直角坐標系中,點A(—2,3)在第四象限。

5、直角坐標系中,點A(—2,1)在第二象限。

知識點3:已知自變量的值求函數(shù)值

1、當x=2時,函數(shù)y=的值為1。

2、當x=3時,函數(shù)y=的值為1。

3、當x=—1時,函數(shù)y=的值為1。

知識點4:基本函數(shù)的概念及性質

1、函數(shù)y=—8x是一次函數(shù)。

2、函數(shù)y=4x+1是正比例函數(shù)。

3、函數(shù)是反比例函數(shù)。

4、拋物線y=—3(x—2)2—5的開口向下。

5、拋物線y=4(x—3)2—10的對稱軸是x=3。

6、拋物線的頂點坐標是(1,2)。

7、反比例函數(shù)的圖象在第一、三象限。

知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

知識點6:特殊三角函數(shù)值

1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知識點7:圓的基本性質

1、半圓或直徑所對的圓周角是直角。

2、任意一個三角形一定有一個外接圓。

3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

4、在同圓或等圓中,相等的圓心角所對的弧相等。

5、同弧所對的圓周角等于圓心角的一半。

6、同圓或等圓的半徑相等。

7、過三個點一定可以作一個圓。

8、長度相等的兩條弧是等弧。

9、在同圓或等圓中,相等的圓心角所對的弧相等。

10、經(jīng)過圓心平分弦的直徑垂直于弦。

知識點8:直線與圓的位置關系

1、直線與圓有唯一公共點時,叫做直線與圓相切。

2、三角形的外接圓的圓心叫做三角形的外心。

3、弦切角等于所夾的弧所對的圓心角。

4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

5、垂直于半徑的直線必為圓的切線。

6、過半徑的外端點并且垂直于半徑的直線是圓的切線。

7、垂直于半徑的直線是圓的切線。

8、圓的切線垂直于過切點的半徑。

中考數(shù)學重點知識點歸納

一、三角形的有關概念

1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。

三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性。

2.三角形中的三條重要線段:角平分線、中線、高

(1)角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

(2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

(3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

說明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點;三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。

二、等腰三角形的性質和判定

(1)性質

1.等腰三角形的兩個底角相等(簡寫成等邊對等角)。

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成等腰三角形的三線合一)。

3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。

6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。

7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。

(2)判定

在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。

在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

三、直角三角形和勾股定理

有一個角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。

勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

勾股數(shù)一定是正整數(shù),常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

方法總結:

當不明確直角三角形的斜邊長,應把已知最長邊分為直角邊和斜邊兩種情況討論。無理數(shù)在數(shù)軸上的表示和線段長表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設未知量)

如果三角形的三邊長a,b,c有關系a2+b2=c2,那么這個三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設為c)。

四、初中三角形中線定理

中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關系。

定理內(nèi)容:三角形一條中線兩側所對邊平方和等于底邊的一半平方與該邊中線平方和的2倍。

中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點。

由定義可知,三角形的中線是一條線段。

由于三角形有三條邊,所以一個三角形有三條中線。

且三條中線交于一點。這點稱為三角形的重心。

每條三角形中線分得的兩個三角形面積相等。

五、直角三角形的判定

判定1:有一個角為90°的三角形是直角三角形。

判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。

判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,那么這個三角形是以這條長邊為斜邊的直角三角形。

判定4:兩個銳角互余的三角形是直角三角形。

判定5:證明直角三角形全等時可以利用HL,兩個三角形的斜邊長對應相等,以及一個直角邊對應相等,則兩直角三角形全等。[定理:斜邊和一條直角對應相等的兩個直角三角形全等。簡稱為HL]

判定6:若兩直線相交且它們的斜率之積互為負倒數(shù),則這兩直線垂直。

判定7:在一個三角形中若它一邊上的中線等于這條中線所在邊的一半,那么這個三角形為直角三角形。

六、勾股定理的逆定理

如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊。

①勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;若時,以a,b,c為三邊的三角形是鈍角三角形;若時,以a,b,c為三邊的三角形是銳角三角形;

②定理中a,b,c及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.

③勾股定理的逆定理在用問題描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形。

七、三角形定理公式

三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。

三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度。

三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和。

三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

三角形的三條角平分線交于一點(內(nèi)心)。

三角形的三邊的垂直平分線交于一點(外心)。

三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半。

中考數(shù)學重點知識點歸納

圓的初步認識

一、圓及圓的相關量的定義(28個)

1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

二、有關圓的字母表示方法(7個)

圓--⊙半徑r弧--⌒直徑d

扇形弧長/圓錐母線l周長C面積S三、有關圓的基本性質與定理(27個)

1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

P在⊙O外,POP在⊙O上,PO=r;P在⊙O內(nèi),PO

2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

5.一條弧所對的圓周角等于它所對的圓心角的一半。

6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

7.不在同一直線上的3個點確定一個圓。

8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

9.直線AB與圓O的位置關系(設OPAB于P,則PO是AB到圓心的距離):

AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO

10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且Rr,圓心距為P):

外離P外切P=R+r;相交R-r

三、有關圓的計算公式

1.圓的周長C=2d2.圓的面積S=s=3.扇形弧長l=nr/180

4.扇形面積S=n/360=rl/25.圓錐側面積S=rl

四、圓的方程

1.圓的標準方程

在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

(x-a)^2+(y-b)^2=r^2

2.圓的一般方程

把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

x^2+y^2+Dx+Ey+F=0

和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

五、圓與直線的位置關系判斷

鏈接:圓與直線的位置關系(一.5)

平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

討論如下2種情況:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.

利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

如果b^2-4ac0,則圓與直線有2交點,即圓與直線相交

如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

如果b^2-4ac0,則圓與直線有0交點,即圓與直線相離

(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

當x=-C/Ax2時,直線與圓相離

當x1

當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

圓的定理:

1不在同一直線上的三點確定一個圓。

2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1

①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2

1圓的兩條平行弦所夾的弧相等

3圓是以圓心為對稱中心的中心對稱圖形

4圓是定點的距離等于定長的點的集合

5圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6圓的外部可以看作是圓心的距離大于半徑的點的集合

中考數(shù)學重點知識點歸納

不等式與不等式組

1.定義:

用符號〉,=,〈號連接的式子叫不等式。

2.性質:

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。

③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

3.分類:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論