2021-2022學(xué)年安徽省舒城干汊河中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年安徽省舒城干汊河中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年安徽省舒城干汊河中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年安徽省舒城干汊河中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年安徽省舒城干汊河中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若θ是第二象限角且sinθ=,則=A. B. C. D.2.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.3.已知函數(shù),,若對(duì),且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.5.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲生一日,長(zhǎng)三尺莞生一日,長(zhǎng)一尺蒲生日自半,莞生日自倍.問幾何日而長(zhǎng)倍?”意思是:“今有蒲草第天長(zhǎng)高尺,蕪草第天長(zhǎng)高尺以后,蒲草每天長(zhǎng)高前一天的一半,蕪草每天長(zhǎng)高前一天的倍.問第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長(zhǎng)所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.6.已知橢圓的短軸長(zhǎng)為2,焦距為分別是橢圓的左、右焦點(diǎn),若點(diǎn)為上的任意一點(diǎn),則的取值范圍為()A. B. C. D.7.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.8.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時(shí),f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)9.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.10.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動(dòng)最大D.我國新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值11.已知定點(diǎn),,是圓上的任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的垂直平分線與直線相交于點(diǎn),則點(diǎn)的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓12.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為______.14.已知實(shí)數(shù),對(duì)任意,有,且,則______.15.在平面直角坐標(biāo)系中,雙曲線(,)的左頂點(diǎn)為A,右焦點(diǎn)為F,過F作x軸的垂線交雙曲線于點(diǎn)P,Q.若為直角三角形,則該雙曲線的離心率是______.16.已知等比數(shù)列滿足,,則該數(shù)列的前5項(xiàng)的和為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.18.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)數(shù)根,求證:.20.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.21.(12分)如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.22.(10分)已知橢圓C的離心率為且經(jīng)過點(diǎn)(1)求橢圓C的方程;(2)過點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】由θ是第二象限角且sinθ=知:,.所以.2.A【解析】

化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。3.D【解析】

先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【詳解】因?yàn)椋?,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無窮;對(duì)函數(shù),當(dāng)時(shí),;根據(jù)題意,對(duì),且,使得成立,只需,即可得,解得.故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.4.B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.5.C【解析】

由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長(zhǎng)度,進(jìn)而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長(zhǎng)度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.6.D【解析】

先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因?yàn)辄c(diǎn)為上的任意一點(diǎn),故.又,因?yàn)椋?,所?故選:D.【點(diǎn)睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點(diǎn)分別是,點(diǎn)為上的任意一點(diǎn),則有,我們常用這個(gè)性質(zhì)來考慮與焦點(diǎn)三角形有關(guān)的問題,本題屬于基礎(chǔ)題.7.D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)?,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.8.B【解析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項(xiàng)判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時(shí)的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項(xiàng)A,,所以,選項(xiàng)A錯(cuò)誤;選項(xiàng)B,因?yàn)?,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項(xiàng)B正確;選項(xiàng)C,,所以,即,選項(xiàng)C錯(cuò)誤;選項(xiàng)D,,選項(xiàng)D錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合運(yùn)用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.9.B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.10.D【解析】

根據(jù)新增確診曲線的走勢(shì)可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線的走勢(shì)可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對(duì)于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì),A選項(xiàng)正確;對(duì)于B選項(xiàng),由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項(xiàng)正確;對(duì)于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動(dòng)最大,C選項(xiàng)正確;對(duì)于D選項(xiàng),在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11.B【解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因?yàn)榫€段的垂直平分線與直線相交于點(diǎn),如下圖所示:所以有,而是中點(diǎn),連接,故,因此當(dāng)在如下圖所示位置時(shí)有,所以有,而是中點(diǎn),連接,故,因此,綜上所述:有,所以點(diǎn)的軌跡是雙曲線.故選:B【點(diǎn)睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運(yùn)算能力和推理論證能力,考查了分類討論思想.12.B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點(diǎn)睛】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.14.-1【解析】

由二項(xiàng)式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式系數(shù)的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15.2【解析】

根據(jù)是等腰直角三角形,且為中點(diǎn)可得,再由雙曲線的性質(zhì)可得,解出即得.【詳解】由題,設(shè)點(diǎn),由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點(diǎn),過點(diǎn),且軸,,可得,,整理得:,即,又,.故答案為:【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),是常考題型.16.31【解析】設(shè),可化為,得,,,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)或【解析】

(1)將曲線的極坐標(biāo)方程和直線的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立方程,即可求得曲線與的交點(diǎn)坐標(biāo);(2)由直線的普通方程為,故上任意一點(diǎn),根據(jù)點(diǎn)到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標(biāo)方程為.當(dāng)時(shí),直線的普通方程為由解得或.從而與的交點(diǎn)坐標(biāo)為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點(diǎn)到的距離為則.當(dāng)時(shí),的最大值為所以;當(dāng)時(shí),的最大值為,所以.綜上所述,或【點(diǎn)睛】解題關(guān)鍵是掌握極坐標(biāo)和參數(shù)方程化為直角坐標(biāo)方程的方法,和點(diǎn)到直線距離公式,考查了分析能力和計(jì)算能力,屬于中檔題.18.(1)(2)【解析】

(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點(diǎn)存在定理和零點(diǎn)定義可得的范圍.(2)令,題意說明時(shí),恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過分類討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當(dāng)時(shí),無零點(diǎn);②當(dāng)時(shí),,所以在上單調(diào)遞增.取,則又,所以,此時(shí)函數(shù)有且只有一個(gè)零點(diǎn);③當(dāng)時(shí),令,解得(舍)或當(dāng)時(shí),,所以在上單調(diào)遞減;當(dāng)時(shí),所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實(shí)數(shù)的取值范圍為.(2)令,根據(jù)題意知,當(dāng)時(shí),恒成立.又討論:①若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當(dāng)時(shí),恒有,故在上是減函數(shù),于是“對(duì)任意成立”的充分條件是“”,即,解得,故綜上,所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查函數(shù)零點(diǎn)問題,考查不等式恒成立問題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過分類討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學(xué)生分析問題解決問題的能力.19.(1);(2)當(dāng)時(shí),在上是減函數(shù);當(dāng)時(shí),在上是增函數(shù);(3)證明見解析.【解析】

(1)當(dāng)時(shí),,求得其導(dǎo)函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導(dǎo)函數(shù),并得出導(dǎo)函數(shù)取得正負(fù)的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當(dāng)時(shí),,,由(2)得的單調(diào)區(qū)間,以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),分析其導(dǎo)函數(shù)的正負(fù)得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當(dāng)時(shí),,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在上是減函數(shù),在上是增函數(shù);(3)當(dāng)時(shí),,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時(shí),,當(dāng)時(shí),,,所以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),則,當(dāng)時(shí),所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點(diǎn)睛】本題考查運(yùn)用導(dǎo)函數(shù)求函數(shù)在某點(diǎn)的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當(dāng)?shù)暮瘮?shù),得出其導(dǎo)函數(shù)的正負(fù),得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.20.(1)證明見解析(2)【解析】

(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)椋?,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)?,所以平?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過作的垂線段,在所有的垂線段中長(zhǎng)度最大的為,此時(shí)必過的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論