版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆吉林省長(zhǎng)春市德惠市第十九中學(xué)中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過(guò)A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為()A. B. C. D.2.如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3;③3a+c>0;④當(dāng)y>0時(shí),x的取值范圍是-1≤x<3;⑤當(dāng)x<0時(shí),y隨x增大而增大.其中結(jié)論正確的個(gè)數(shù)是()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)3.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱(chēng)為格點(diǎn),已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn),且使得△ABC為等腰直角三角形,則這樣的點(diǎn)C有()A.6個(gè) B.7個(gè) C.8個(gè) D.9個(gè)4.如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)M為BC的中點(diǎn),MN⊥AC于點(diǎn)N,則MN等于()A.?
B.?
C.?
D.?5.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對(duì)折,A是對(duì)折后劣弧上的一點(diǎn),∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°6.如圖1,在△ABC中,D、E分別是AB、AC的中點(diǎn),將△ADE沿線段DE向下折疊,得到圖1.下列關(guān)于圖1的四個(gè)結(jié)論中,不一定成立的是()A.點(diǎn)A落在BC邊的中點(diǎn) B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC7.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱(chēng)軸上一點(diǎn),則OP+AP的最小值為().A.3 B. C. D.8.某市從今年1月1日起調(diào)整居民用水價(jià)格,每立方米水費(fèi)上漲.小麗家去年12月份的水費(fèi)是15元,而今年5月的水費(fèi)則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價(jià)格.設(shè)去年居民用水價(jià)格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.9.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點(diǎn)A,B,C和點(diǎn)D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長(zhǎng)為()A.4 B..5 C.6 D.810.某公園里鮮花的擺放如圖所示,第①個(gè)圖形中有3盆鮮花,第②個(gè)圖形中有6盆鮮花,第③個(gè)圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個(gè)圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.5111.如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn),若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.1212.如圖,將一塊含有30°角的直角三角板的兩個(gè)頂點(diǎn)放在長(zhǎng)方形直尺的一組對(duì)邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.關(guān)于x的一元二次方程有實(shí)數(shù)根,則a的取值范圍是__________.14.如果一個(gè)矩形的面積是40,兩條對(duì)角線夾角的正切值是,那么它的一條對(duì)角線長(zhǎng)是__________.15.在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為,則a的值是_____.16.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當(dāng)y>0時(shí),x的取值范圍是__.17.在“三角尺拼角”實(shí)驗(yàn)中,小明同學(xué)把一副三角尺按如圖所示的方式放置,則∠1=__________°.18.計(jì)算:﹣1﹣2=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,海中有一個(gè)小島A,該島四周11海里范圍內(nèi)有暗礁.有一貨輪在海面上由西向正東方向航行,到達(dá)B處時(shí)它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達(dá)小島南偏西45°方向上的點(diǎn)C處.問(wèn):如果貨輪繼續(xù)向正東方向航行,是否會(huì)有觸礁的危險(xiǎn)?(參考數(shù)據(jù):≈1.41,≈1.73)20.(6分)已知:不等式≤2+x(1)求不等式的解;(2)若實(shí)數(shù)a滿足a>2,說(shuō)明a是否是該不等式的解.21.(6分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱(chēng)點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過(guò)點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長(zhǎng).拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱(chēng)點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過(guò)點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說(shuō)明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫(xiě)出β的取值范圍.22.(8分)(問(wèn)題情境)張老師給愛(ài)好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.23.(8分)先化簡(jiǎn),再求值:,其中滿足.24.(10分)(1)如圖1,在矩形ABCD中,點(diǎn)O在邊AB上,∠AOC=∠BOD,求證:AO=OB;(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,OP與⊙O相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).25.(10分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測(cè)角儀AB,在A處測(cè)得電線桿上C處的仰角為30°,求拉線CE的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù):).26.(12分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,設(shè)拋物線的頂點(diǎn)為D.(1)求拋物線的解析式;(2)在拋物線對(duì)稱(chēng)軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.27.(12分)觀察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)請(qǐng)你按以上規(guī)律寫(xiě)出第4個(gè)算式;(2)把這個(gè)規(guī)律用含字母的式子表示出來(lái);(3)你認(rèn)為(2)中所寫(xiě)出的式子一定成立嗎?并說(shuō)明理由.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.2、B【解析】
解:∵拋物線與x軸有2個(gè)交點(diǎn),∴b2﹣4ac>0,所以①正確;∵拋物線的對(duì)稱(chēng)軸為直線x=1,而點(diǎn)(﹣1,0)關(guān)于直線x=1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(3,0),∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時(shí),y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯(cuò)誤;∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(﹣1,0),(3,0),∴當(dāng)﹣1<x<3時(shí),y>0,所以④錯(cuò)誤;∵拋物線的對(duì)稱(chēng)軸為直線x=1,∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大?。寒?dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)位置:拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定:△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).3、A【解析】
根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時(shí),符合條件的C點(diǎn)有2個(gè);②AB為等腰直角△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有4個(gè).故選:C.【點(diǎn)睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫(huà)出符合實(shí)際條件的圖形,再利用數(shù)學(xué)知識(shí)來(lái)求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.4、A【解析】
連接AM,根據(jù)等腰三角形三線合一的性質(zhì)得到AM⊥BC,根據(jù)勾股定理求得AM的長(zhǎng),再根據(jù)在直角三角形的面積公式即可求得MN的長(zhǎng).【詳解】解:連接AM,
∵AB=AC,點(diǎn)M為BC中點(diǎn),
∴AM⊥CM(三線合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根據(jù)勾股定理得:AM===4,
又S△AMC=MN?AC=AM?MC,∴MN==.
故選A.【點(diǎn)睛】綜合運(yùn)用等腰三角形的三線合一,勾股定理.特別注意結(jié)論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.5、B【解析】試題分析:如圖,翻折△ACD,點(diǎn)A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B6、A【解析】
根據(jù)折疊的性質(zhì)明確對(duì)應(yīng)關(guān)系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點(diǎn),所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯(cuò),BA≠CA.故選A.【點(diǎn)睛】主要考查了三角形的內(nèi)角和外角之間的關(guān)系以及等腰三角形的性質(zhì).還涉及到翻折變換以及中位線定理的運(yùn)用.(1)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和.(1)三角形的內(nèi)角和是180度.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件.通過(guò)折疊變換考查正多邊形的有關(guān)知識(shí),及學(xué)生的邏輯思維能力.解答此類(lèi)題最好動(dòng)手操作.7、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點(diǎn)B,再利用配方法得到點(diǎn)A,得到OA的長(zhǎng)度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點(diǎn)之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時(shí)-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因?yàn)锳P垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時(shí),PB+PH最短,而B(niǎo)C=AB=3,所以最小值為3.故選A.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合運(yùn)用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.8、A【解析】解:設(shè)去年居民用水價(jià)格為x元/cm1,根據(jù)題意列方程:,故選A.9、C【解析】
解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.10、D【解析】試題解析:第①個(gè)圖形中有盆鮮花,第②個(gè)圖形中有盆鮮花,第③個(gè)圖形中有盆鮮花,…第n個(gè)圖形中的鮮花盆數(shù)為則第⑥個(gè)圖形中的鮮花盆數(shù)為故選C.11、B【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長(zhǎng)度;最后判斷出當(dāng)弦GH是圓的直徑時(shí),它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點(diǎn)E,F(xiàn)分別是AC、BC的中點(diǎn),∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時(shí),它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點(diǎn)睛】本題結(jié)合動(dòng)點(diǎn)考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.12、D【解析】如圖,因?yàn)椋?=30°,∠1+∠3=60°,所以∠3=30°,因?yàn)锳D∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、a≤1且a≠0【解析】∵關(guān)于x的一元二次方程有實(shí)數(shù)根,∴,解得:,∴a的取值范圍為:且.點(diǎn)睛:解本題時(shí),需注意兩點(diǎn):(1)這是一道關(guān)于“x”的一元二次方程,因此;(2)這道一元二次方程有實(shí)數(shù)根,因此;這個(gè)條件缺一不可,尤其是第一個(gè)條件解題時(shí)很容易忽略.14、1.【解析】
如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問(wèn)題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.15、2+【解析】
試題分析:過(guò)P點(diǎn)作PE⊥AB于E,過(guò)P點(diǎn)作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據(jù)勾股定理得:PE=1,∵點(diǎn)A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點(diǎn)睛】本題主要考查的就是垂徑定理的應(yīng)用以及直角三角形勾股定理的應(yīng)用,屬于中等難度的題型.解決這個(gè)問(wèn)題的關(guān)鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個(gè)隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個(gè)條件的應(yīng)用也是很重要的.16、【解析】
根據(jù)拋物線的對(duì)稱(chēng)軸以及拋物線與x軸的一個(gè)交點(diǎn),確定拋物線與x軸的另一個(gè)交點(diǎn),再結(jié)合圖象即可得出答案.【詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對(duì)稱(chēng)軸為直線,與x軸的一個(gè)交點(diǎn)為(-1,0),∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),結(jié)合圖象可知,當(dāng)y>0時(shí),即x軸上方的圖象,對(duì)應(yīng)的x的取值范圍是,故答案為:.【點(diǎn)睛】本題考查了二次函數(shù)與不等式的問(wèn)題,解題的關(guān)鍵是通過(guò)圖象確定拋物線與x軸的另一個(gè)交點(diǎn),并熟悉二次函數(shù)與不等式的關(guān)系.17、1【解析】試題分析:由三角形的外角的性質(zhì)可知,∠1=90°+30°=1°,故答案為1.考點(diǎn):三角形的外角性質(zhì);三角形內(nèi)角和定理.18、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、不會(huì)有觸礁的危險(xiǎn),理由見(jiàn)解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設(shè)AH=CH=x,根據(jù)可得關(guān)于x的方程,解之可得.詳解:過(guò)點(diǎn)A作AH⊥BC,垂足為點(diǎn)H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設(shè)AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行,不會(huì)有觸礁的危險(xiǎn).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣方向角問(wèn)題,解一般三角形的問(wèn)題一般可以轉(zhuǎn)化為解直角三角形的問(wèn)題,解決的方法就是作高線.20、(1)x≥﹣1;(2)a是不等式的解.【解析】
(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化為1可得.
(2)根據(jù)不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號(hào)得:2﹣x≤6+3x,移項(xiàng)、合并同類(lèi)項(xiàng)得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點(diǎn)睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關(guān)鍵21、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見(jiàn)解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】
發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱(chēng)性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過(guò)點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長(zhǎng),根據(jù)垂徑定理就可求出折痕的長(zhǎng).拓展:(1)過(guò)A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N(xiāo),則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過(guò)點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱(chēng)點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過(guò)點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長(zhǎng)為2拓展:(1)相切.分別過(guò)A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時(shí),則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時(shí),連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點(diǎn)P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時(shí),點(diǎn)O′在半圓上,∴當(dāng)0°<α<30°時(shí)點(diǎn)O′在半圓內(nèi),線段NO′與半圓只有一個(gè)公共點(diǎn)B;當(dāng)α增大到45°時(shí)NA′與半圓相切,即線段NO′與半圓只有一個(gè)公共點(diǎn)B.當(dāng)α繼續(xù)增大時(shí),點(diǎn)P逐漸靠近點(diǎn)N,但是點(diǎn)P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個(gè)公共點(diǎn)B.綜上所述0°<α<30°或45°≤α<90°.【點(diǎn)睛】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對(duì)的直角邊等于斜邊的一半、翻折問(wèn)題等知識(shí),正確的作出輔助線是解題的關(guān)鍵.22、小軍的證明:見(jiàn)解析;小俊的證明:見(jiàn)解析;[變式探究]見(jiàn)解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過(guò)點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過(guò)點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過(guò)點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過(guò)點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問(wèn)題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問(wèn)題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長(zhǎng)之和(6+2)dm.【點(diǎn)睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進(jìn)行證明,故正確理解題意由此進(jìn)行后面的證明是解題的關(guān)鍵.23、1【解析】試題分析:原式第一項(xiàng)括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分后,兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,已知方程變形后代入計(jì)算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.24、(1)證明見(jiàn)解析;(2)25°.【解析】試題分析:(1)根據(jù)等量代換可求得∠AOD=∠BOC,根據(jù)矩形的對(duì)邊相等,每個(gè)角都是直角,可知∠A=∠B=90°,AD=BC,根據(jù)三角形全等的判定AAS證得△AOD≌△BOC,從而得證結(jié)論.(2)利用切線的性質(zhì)和直角三角形的兩個(gè)銳角互余的性質(zhì)得到圓心角∠POA的度數(shù),然后利用圓周角定理來(lái)求∠ABC的度數(shù).試題解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四邊形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直徑,PA與相切于點(diǎn)A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.25、5.7米.【解析】試題分析:由題意,過(guò)點(diǎn)A作AH⊥CD于H.在Rt△ACH中,可求出CH,進(jìn)而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長(zhǎng).試題解析:解:如答圖,過(guò)點(diǎn)A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長(zhǎng)約為5.7米.考點(diǎn):1.解直角三角形的應(yīng)用(仰角俯角問(wèn)題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.矩形的判定和性質(zhì).26、(1)y=﹣x2+2x+1;(2)P(2,1)或(,)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版門(mén)頭裝修工程綠色建材采購(gòu)協(xié)議4篇
- 2025年度新型城鎮(zhèn)化建設(shè)項(xiàng)目抵押借款協(xié)議范本4篇
- 2025年環(huán)保型建筑材料供應(yīng)與施工合同4篇
- 二零二五年度供應(yīng)鏈代付款合作協(xié)議4篇
- 2025年度旅游景區(qū)場(chǎng)地經(jīng)營(yíng)合作協(xié)議3篇
- 2025年度成品油運(yùn)輸合同碳排放交易管理規(guī)范4篇
- 2024物業(yè)公司清潔服務(wù)合同
- 二零二五年酒店酒水行業(yè)市場(chǎng)拓展與戰(zhàn)略規(guī)劃協(xié)議3篇
- 2025年度美容院產(chǎn)品研發(fā)與創(chuàng)新合作協(xié)議4篇
- 2025年度文化教育項(xiàng)目投資與合作合同4篇
- 中國(guó)大百科全書(shū)(第二版全32冊(cè))08
- 初中古詩(shī)文言文背誦內(nèi)容
- 天然氣分子篩脫水裝置吸附計(jì)算書(shū)
- 檔案管理項(xiàng)目 投標(biāo)方案(技術(shù)方案)
- 蘇教版六年級(jí)上冊(cè)100道口算題(全冊(cè)完整版)
- 2024年大學(xué)試題(宗教學(xué))-佛教文化筆試考試歷年典型考題及考點(diǎn)含含答案
- 計(jì)算機(jī)輔助設(shè)計(jì)智慧樹(shù)知到期末考試答案章節(jié)答案2024年青島城市學(xué)院
- 知識(shí)庫(kù)管理規(guī)范大全
- 電腦耗材實(shí)施方案、供貨方案、售后服務(wù)方案
- 環(huán)衛(wèi)項(xiàng)目年終工作總結(jié)
- 弘揚(yáng)教育家精神爭(zhēng)做四有好老師心得10篇
評(píng)論
0/150
提交評(píng)論